|   | 
Details
   web
Records
Author Abbruzzetti, S.; Crema, E.; Masino, L.; Vecli, A.; Viappiani, C.; Small, J.R.; Libertini, L.J.; Small, E.W.
Title Fast events in protein folding: structural volume changes accompanying the early events in the N-->I transition of apomyoglobin induced by ultrafast pH jump Type Journal Article
Year 2000 Publication Biophysical Journal Abbreviated Journal Biophys J
Volume 78 Issue 1 Pages 405-415
Keywords Animals; Apoproteins/*chemistry; Horses; *Hydrogen-Ion Concentration; Kinetics; Models, Molecular; Myoglobin/*chemistry; Protein Conformation; *Protein Folding; Protein Structure, Secondary; Spectrometry, Fluorescence
Abstract Ultrafast, laser-induced pH jump with time-resolved photoacoustic detection has been used to investigate the early protonation steps leading to the formation of the compact acid intermediate (I) of apomyoglobin (ApoMb). When ApoMb is in its native state (N) at pH 7.0, rapid acidification induced by a laser pulse leads to two parallel protonation processes. One reaction can be attributed to the binding of protons to the imidazole rings of His24 and His119. Reaction with imidazole leads to an unusually large contraction of -82 +/- 3 ml/mol, an enthalpy change of 8 +/- 1 kcal/mol, and an apparent bimolecular rate constant of (0.77 +/- 0.03) x 10(10) M(-1) s(-1). Our experiments evidence a rate-limiting step for this process at high ApoMb concentrations, characterized by a value of (0. 60 +/- 0.07) x 10(6) s(-1). The second protonation reaction at pH 7. 0 can be attributed to neutralization of carboxylate groups and is accompanied by an apparent expansion of 3.4 +/- 0.2 ml/mol, occurring with an apparent bimolecular rate constant of (1.25 +/- 0.02) x 10(11) M(-1) s(-1), and a reaction enthalpy of about 2 kcal/mol. The activation energy for the processes associated with the protonation of His24 and His119 is 16.2 +/- 0.9 kcal/mol, whereas that for the neutralization of carboxylates is 9.2 +/- 0.9 kcal/mol. At pH 4.5 ApoMb is in a partially unfolded state (I) and rapid acidification experiments evidence only the process assigned to carboxylate protonation. The unusually large contraction and the high energetic barrier observed at pH 7.0 for the protonation of the His residues suggests that the formation of the compact acid intermediate involves a rate-limiting step after protonation.
Address Dipartimento di Fisica, Universita di Parma, 43100 Parma, Italia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3495 ISBN Medium
Area Expedition (up) Conference
Notes PMID:10620304 Approved no
Call Number Equine Behaviour @ team @ Serial 3792
Permanent link to this record
 

 
Author Gilmanshin, R.; Callender, R.H.; Dyer, R.B.
Title The core of apomyoglobin E-form folds at the diffusion limit Type Journal Article
Year 1998 Publication Nature Structural Biology Abbreviated Journal Nat Struct Biol
Volume 5 Issue 5 Pages 363-365
Keywords Animals; Apoproteins/*chemistry; Diffusion; Horses; Myoglobin/*chemistry; *Protein Folding; Spectroscopy, Fourier Transform Infrared; Temperature
Abstract The E-form of apomyoglobin has been characterized using infrared and fluorescence spectroscopies, revealing a compact core with native like contacts, most probably consisting of 15-20 residues of the A, G and H helices of apomyoglobin. Fast temperature-jump, time-resolved infrared measurements reveal that the core is formed within 96 micros at 46 degrees C, close to the diffusion limit for loop formation. Remarkably, the folding pathway of the E-form is such that the formation of a limited number of native-like contacts is not rate limiting, or that the contacts form on the same time scale expected for diffusion controlled loop formation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1072-8368 ISBN Medium
Area Expedition (up) Conference
Notes PMID:9586997 Approved no
Call Number Equine Behaviour @ team @ Serial 3795
Permanent link to this record
 

 
Author Ballew, R.M.; Sabelko, J.; Gruebele, M.
Title Direct observation of fast protein folding: the initial collapse of apomyoglobin Type Journal Article
Year 1996 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 93 Issue 12 Pages 5759-5764
Keywords Animals; Apoproteins/*chemistry; Circular Dichroism; Horses; Kinetics; Muscle, Skeletal/chemistry; Myoglobin/*chemistry; *Protein Folding; Spectrometry, Fluorescence; Spectrophotometry, Infrared; Temperature
Abstract The rapid refolding dynamics of apomyoglobin are followed by a new temperature-jump fluorescence technique on a 15-ns to 0.5-ms time scale in vitro. The apparatus measures the protein-folding history in a single sweep in standard aqueous buffers. The earliest steps during folding to a compact state are observed and are complete in under 20 micros. Experiments on mutants and consideration of steady-state CD and fluorescence spectra indicate that the observed microsecond phase monitors assembly of an A x (H x G) helix subunit. Measurements at different viscosities indicate diffusive behavior even at low viscosities, in agreement with motions of a solvent-exposed protein during the initial collapse.
Address School of Chemical Sciences and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, 61801, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition (up) Conference
Notes PMID:8650166 Approved no
Call Number Equine Behaviour @ team @ Serial 3798
Permanent link to this record
 

 
Author Chiba, K.; Ikai, A.; Kawamura-Konishi, Y.; Kihara, H.
Title Kinetic study on myoglobin refolding monitored by five optical probe stopped-flow methods Type Journal Article
Year 1994 Publication Proteins Abbreviated Journal Proteins
Volume 19 Issue 2 Pages 110-119
Keywords Animals; Chromatography, Gel; Circular Dichroism; Horses; Kinetics; Metmyoglobin/analogs & derivatives/chemistry; Myoglobin/*chemistry; *Protein Folding; Spectrometry, Fluorescence; Spectrophotometry, Ultraviolet; Urea
Abstract The refolding kinetics of horse cyanometmyoglobin induced by concentration jump of urea was investigated by five optical probe stopped-flow methods: absorption at 422 nm, tryptophyl fluorescence at around 340 nm, circular dichroism (CD) at 222 nm, CD at 260 nm, and CD at 422 nm. In the refolding process, we detected three phases with rate constants of > 1 x 10(2) s-1, (4.5-9.3) s-1, and (2-5) x 10(-3) s-1. In the fastest phase, a substantial amount of secondary structure (approximately 40%) is formed within the dead time of the CD stopped-flow apparatus (10.7 ms). The kinetic intermediate populated in the fastest phase is shown to capture a hemindicyanide, suggesting that a “heme pocket precursor” recognized by hemindicyanide must be constructed within the dead time. In the middle phase, most of secondary and tertiary structures, especially around the captured hemindicyanide, have been constructed. In the slowest phase, we detected a minor structural rearrangement accompanying the ligand-exchange reaction in the fifth coordination of ferric iron. We present a possible model for the refolding process of myoglobin in the presence of the heme group.
Address Laboratory of Biodynamics, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0887-3585 ISBN Medium
Area Expedition (up) Conference
Notes PMID:8090705 Approved no
Call Number Equine Behaviour @ team @ Serial 3799
Permanent link to this record
 

 
Author Pierce, M.M.; Nall, B.T.
Title Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization Type Journal Article
Year 2000 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol
Volume 298 Issue 5 Pages 955-969
Keywords Amino Acid Sequence; Amino Acid Substitution/genetics; Binding Sites; Cytochrome c Group/*chemistry/genetics/*metabolism; *Cytochromes c; Enzyme Stability/drug effects; Fluorescence; Guanidine/pharmacology; Heme/*metabolism; Histidine/genetics/*metabolism; Hydrogen-Ion Concentration; Isomerism; Kinetics; Models, Molecular; Molecular Sequence Data; Mutation/genetics; Proline/*chemistry/metabolism; Protein Conformation/drug effects; Protein Denaturation/drug effects; *Protein Folding; Protein Renaturation; Saccharomyces cerevisiae/enzymology/genetics; Sequence Alignment; Thermodynamics
Abstract The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.
Address Center for Biomolecular Structure, Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2836 ISBN Medium
Area Expedition (up) Conference
Notes PMID:10801361 Approved no
Call Number refbase @ user @ Serial 3853
Permanent link to this record
 

 
Author Mizuguchi, M.; Arai, M.; Ke, Y.; Nitta, K.; Kuwajima, K.
Title Equilibrium and kinetics of the folding of equine lysozyme studied by circular dichroism spectroscopy Type Journal Article
Year 1998 Publication Journal of Molecular Biology Abbreviated Journal
Volume 283 Issue 1 Pages 265-277
Keywords equine lysozyme; protein folding; molten globule; stopped-flow; folding intermediate
Abstract The equilibrium unfolding and the kinetics of unfolding and refolding of equine lysozyme, a Ca2+-binding protein, were studied by means of circular dichroism spectra in the far and near-ultraviolet regions. The transition curves of the guanidine hydrochloride-induced unfolding measured at 230 nm and 292.5 nm, and for the apo and holo forms of the protein have shown that the unfolding is well represented by a three-state mechanism in which the molten globule state is populated as a stable intermediate. The molten globule state of this protein is more stable and more native-like than that of α-lactalbumin, a homologous protein of equine lysozyme. The kinetic unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by stopped-flow circular dichroism. The observed unfolding and refolding curves both agreed well with a single-exponential function. However, in the kinetic refolding reactions below 3 M guanidine hydrochloride, a burst-phase change in the circular dichroism was present, and the burst-phase intermediate in the kinetic refolding is shown to be identical with the molten globule state observed in the equilibrium unfolding. Under a strongly native condition, virtually all the molecules of equine lysozyme transform the structure from the unfolded state into the molten globule, and the subsequent refolding takes place from the molten globule state. The transition state of folding, which may exist between the molten globule and the native states, was characterized by investigating the guanidine hydrochloride concentration-dependence of the rate constants of refolding and unfolding. More than 80% of the hydrophobic surface of the protein is buried in the transition state, so that it is much closer to the native state than to the molten globule in which only 36% of the surface is buried in the interior of the molecule. It is concluded that all the present results are best explained by a sequential model of protein folding, in which the molten globule state is an obligatory folding intermediate on the pathway of folding.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition (up) Conference
Notes Approved no
Call Number refbase @ user @ Serial 3990
Permanent link to this record