|   | 
Details
   web
Records
Author Horowitz, A.C.
Title (up) Do humans ape? Or do apes human? Imitation and intention in humans (Homo sapiens) and other animals Type Journal Article
Year 2003 Publication Journal of comparative psychology Abbreviated Journal J Comp Psychol
Volume 117 Issue 3 Pages 325-336
Keywords Adolescent; Adult; Animals; *Appetitive Behavior; Attention; Child, Preschool; Concept Formation; Female; Humans; *Imitative Behavior; Male; Motivation; Pan troglodytes/*psychology; *Problem Solving; *Psychomotor Performance; Reaction Time; Species Specificity
Abstract A. Whiten, D. M. Custance, J.-C. Gomez, P. Teixidor, and K. A. Bard (1996) tested chimpanzees' (Pan troglodytes) and human children's (Homo sapiens) skills at imitation with a 2-action test on an “artificial fruit.” Chimpanzees imitated to a restricted degree; children were more thoroughly imitative. Such results prompted some to assert that the difference in imitation indicates a difference in the subjects' understanding of the intentions of the demonstrator (M. Tomasello, 1996). In this experiment, 37 adult human subjects were tested with the artificial fruit. Far from being perfect imitators, the adults were less imitative than the children. These results cast doubt on the inference from imitative performance to an ability to understand others' intentions. The results also demonstrate how any test of imitation requires a control group and attention to the level of behavioral analysis.
Address Department of Cognitive Science, University of California, San Diego, CA, USA. ahorowitz@crl.ucsd.edu
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. : 1983 Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7036 ISBN Medium
Area Expedition Conference
Notes PMID:14498809 Approved yes
Call Number refbase @ user @ Serial 736
Permanent link to this record
 

 
Author Osthaus, B.; Lea, S.E.G.; Slater, A.M.
Title (up) Dogs (Canis lupus familiaris) fail to show understanding of means-end connections in a string-pulling task Type Journal Article
Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 8 Issue 1 Pages 37-47
Keywords Animals; *Association Learning; *Cognition; Dogs/*psychology; *Problem Solving
Abstract Domestic dogs (Canis lupus familiaris) were tested in four experiments for their understanding of means-end connections. In each of the experiments, the dogs attempted to retrieve a food treat that could be seen behind a barrier and which was connected, via string, to a within-reach wooden block. In the experiments, either one or two strings were present, but the treat was attached only to one string. Successful retrieval of the treat required the animals to pull the appropriate string (either by pawing or by grasping the wooden block in their jaws) until the treat emerged from under the barrier. The results showed that the dogs were successful if the treat was in a perpendicular line to the barrier, i.e. straight ahead, but not when the string was at an angle: in the latter condition, the typical response was a proximity error in that the dogs pawed or mouthed at a location closest in line to the treat. When two strings that crossed were present, the dogs tended to pull on the wrong string. The combined results from the experiments show that, although dogs can learn to pull on a string to obtain food, they do not spontaneously understand means-end connections involving strings.
Address School of Psychology, University of Exeter, Exeter, EX4 4QG, UK. b.osthaus@exeter.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15338446 Approved no
Call Number Equine Behaviour @ team @ Serial 2513
Permanent link to this record
 

 
Author Fiset, S.; Landry, F.; Ouellette, M.
Title (up) Egocentric search for disappearing objects in domestic dogs: evidence for a geometric hypothesis of direction Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 1 Pages 1-12
Keywords Animals; Dogs/*psychology; Female; Form Perception; Male; Mental Recall; *Motion Perception; Orientation; Problem Solving; *Space Perception
Abstract In several species, the ability to locate a disappearing object is an adaptive component of predatory and social behaviour. In domestic dogs, spatial memory for hidden objects is primarily based on an egocentric frame of reference. We investigated the geometric components of egocentric spatial information used by domestic dogs to locate an object they saw move and disappear. In experiment 1, the distance and the direction between the position of the animal and the hiding location were put in conflict. Results showed that the dogs primarily used the directional information between their own spatial coordinates and the target position. In experiment 2, the accuracy of the dogs in finding a hidden object by using directional information was estimated by manipulating the angular deviation between adjacent hiding locations and the position of the animal. Four angular deviations were tested: 5, 7.5, 10 and 15 degrees . Results showed that the performance of the dogs decreased as a function of the angular deviations but it clearly remained well above chance, revealing that the representation of the dogs for direction is precise. In the discussion, we examine how and why domestic dogs determine the direction in which they saw an object disappear.
Address Secteur Sciences Humaines, Universite de Moncton, Campus d'Edmundston, Edmundston, New-Brunswick, Canada E3V 2S8. sfiset@umce.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15750805 Approved no
Call Number Equine Behaviour @ team @ Serial 2489
Permanent link to this record
 

 
Author Sturz, B.R.; Bodily, K.D.; Katz, J.S.
Title (up) Evidence against integration of spatial maps in humans Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 3 Pages 207-217
Keywords Adult; *Association Learning; Computer Graphics; Humans; Male; *Orientation; *Problem Solving; Reference Values; *Space Perception; *Spatial Behavior; User-Computer Interface
Abstract A dynamic 3-D virtual environment was constructed for humans as an open-field analogue of Blaisdell and Cook's (2005) pigeon foraging task to determine if humans, like pigeons, were capable of integrating separate spatial maps. Participants used keyboard keys and a mouse to search for a hidden goal in a 4x4 grid of raised cups. During Phase 1 training, a goal was consistently located between two landmarks (Map 1: blue T and red L). During Phase 2 training, a goal was consistently located down and left of a single landmark (Map 2: blue T). Transfer trials were then conducted in which participants were required to make choices in the presence of the red L alone. Cup choices during transfer assessed participants' strategies: association (from Map 1), generalization (from Map 2), or integration (combining Map 1 and 2). During transfer, cup choices increased to a location which suggested an integration strategy and was consistent with results obtained with pigeons. However, additional analyses of the human data suggested participants initially used a generalization strategy followed by a progressive shift in search behavior away from the red L. This shift in search behavior during transfer was responsible for the changes in cup choices across transfer trials and was confirmed by a control condition. These new analyses offer an alternative explanation to the spatial integration account proposed for pigeons.
Address Department of Psychology, Auburn University, Auburn, AL 36849, USA. sturzbr@auburn.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16767470 Approved no
Call Number Equine Behaviour @ team @ Serial 2464
Permanent link to this record
 

 
Author Rilling, M.E.; Neiworth, J.J.
Title (up) How animals use images Type Journal Article
Year 1991 Publication Science Progress Abbreviated Journal Sci Prog
Volume 75 Issue 298 Pt 3-4 Pages 439-452
Keywords Animals; Association Learning; Columbidae; *Concept Formation; *Imagination; *Mental Recall; Motion Perception; Problem Solving; *Thinking; *Visual Perception
Abstract Animal cognition is a field within experimental psychology in which cognitive processes formerly studied exclusively with people have been demonstrated in animals. Evidence for imagery in the pigeon emerges from the experiments described here. The pigeon's task was to discriminate, by pecking the appropriate choice key, between a clock hand presented on a video screen that rotated clockwise with constant velocity from a clock hand that violated constant velocity. Imagery was defined by trials on which the line rotated from 12.00 o'clock to 3.00 o'clock, then disappeared during a delay, and reappeared at a final stop location beyond 3.00 o'clock. After acquisition of a discrimination with final stop locations at 3.00 o'clock and 6.00 o'clock, the evidence for imagery was the accurate responding of the pigeons to novel locations at 4.00 o'clock and 7.00 o'clock. Pigeons display evidence of imagery by transforming a representation of movement that includes a series of intermediate steps which accurately represent the location of a moving stimulus after it disappears.
Address Department of Psychology, Michigan State University, East Lansing 48824
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8504 ISBN Medium
Area Expedition Conference
Notes PMID:1842858 Approved no
Call Number Equine Behaviour @ team @ Serial 2831
Permanent link to this record
 

 
Author Mulcahy, N.J.; Call, J.
Title (up) How great apes perform on a modified trap-tube task Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 3 Pages 193-199
Keywords Animals; *Discrimination Learning; Female; Gorilla gorilla; Hominidae/*psychology; *Intelligence; Male; *Motor Skills; Pan paniscus; Pan troglodytes; Pongo pygmaeus; *Problem Solving; Species Specificity
Abstract To date, neither primates nor birds have shown clear evidence of causal knowledge when attempting to solve the trap tube task. One factor that may have contributed to mask the knowledge that subjects may have about the task is that subjects were only allowed to push the reward away from them, which is a particularly difficult action for primates in certain problem solving situations. We presented five orangutans (Pongo pygmaeus), two chimpanzees (Pan troglodytes), two bonobos (Pan paniscus), and one gorilla (Gorilla gorilla) with a modified trap tube that allowed subjects to push or rake the reward with the tool. In two additional follow-up tests, we inverted the tube 180 degrees rendering the trap nonfunctional and also presented subjects with the original task in which they were required to push the reward out of the tube. Results showed that all but one of the subjects preferred to rake the reward. Two orangutans and one chimpanzee (all of whom preferred to rake the reward), consistently avoided the trap only when it was functional but failed the original task. These findings suggest that some great apes may have some causal knowledge about the trap-tube task. Their success, however, depended on whether they were allowed to choose certain tool-using actions.
Address Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany. mulcahy@eva.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16612632 Approved no
Call Number Equine Behaviour @ team @ Serial 2469
Permanent link to this record
 

 
Author Whiten, A.
Title (up) Imitation of the sequential structure of actions by chimpanzees (Pan troglodytes) Type Journal Article
Year 1998 Publication Journal of comparative psychology (Washington, D.C. : 1983) Abbreviated Journal J Comp Psychol
Volume 112 Issue 3 Pages 270-281
Keywords Animals; Appetitive Behavior/physiology; *Ceremonial Behavior; Exploratory Behavior/physiology; Female; Fruit; Imitative Behavior/*physiology; Learning/*physiology; Male; Pan troglodytes/*psychology; Practice (Psychology); Problem Solving/*physiology
Abstract Imitation was studied experimentally by allowing chimpanzees (Pan troglodytes) to observe alternative patterns of actions for opening a specially designed “artificial fruit.” Like problematic foods primates deal with naturally, with the test fruit several defenses had to be removed to gain access to an edible core, but the sequential order and method of defense removal could be systematically varied. Each subject repeatedly observed 1 of 2 alternative techniques for removing each defense and 1 of 2 alternative sequential patterns of defense removal. Imitation of sequential organization emerged after repeated cycles of demonstration and attempts at opening the fruit. Imitation in chimpanzees may thus have some power to produce cultural convergence, counter to the supposition that individual learning processes corrupt copied actions. Imitation of sequential organization was accompanied by imitation of some aspects of the techniques that made up the sequence.
Address Scottish Primate Research Group, School of Psychology, University of St. Andrews, Fife, Scotland. a.whiten@st-andrews.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7036 ISBN Medium
Area Expedition Conference
Notes PMID:9770315 Approved no
Call Number refbase @ user @ Serial 743
Permanent link to this record
 

 
Author Call, J.
Title (up) Inferences by exclusion in the great apes: the effect of age and species Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 4 Pages 393-403
Keywords Age Factors; Animals; Association Learning; *Cognition; *Concept Formation; *Discrimination Learning; Female; Gorilla gorilla; Hominidae/classification/*psychology; Male; Pan paniscus; Pan troglodytes; Pongo pygmaeus; *Problem Solving; Species Specificity
Abstract This study investigated the ability of chimpanzees, gorillas, orangutans, and bonobos to make inferences by exclusion using the procedure pioneered by Premack and Premack (Cognition 50:347-362, 1994) with chimpanzees. Thirty apes were presented with two different food items (banana vs. grape) on a platform and covered with identical containers. One of the items was removed from the container and placed between the two containers so that subjects could see it. After discarding this item, subjects could select between the two containers. In Experiment 1, apes preferentially selected the container that held the item that the experimenter had not discarded, especially if subjects saw the experimenter remove the item from the container (but without seeing the container empty). Experiment 3 in which the food was removed from one of the containers behind a barrier confirmed these results. In contrast, subjects performed at chance levels when a stimulus (colored plastic chip: Exp. 1; food item: Exp. 2 and Exp. 3) designated the item that had been removed. These results indicated that apes made inferences, not just learned to use a discriminative cue to avoid the empty container. Apes perceived and treated the item discarded by the experimenter as if it were the very one that had been hidden under the container. Results suggested a positive relationship between age and inferential ability independent of memory ability but no species differences.
Address Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany. call@eva.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16924458 Approved no
Call Number Equine Behaviour @ team @ Serial 2444
Permanent link to this record
 

 
Author Griffin, A.S.; Guez, D.
Title (up) Innovation and problem solving: A review of common mechanisms Type Journal Article
Year 2014 Publication Behavioural Processes Abbreviated Journal Behav. Process.
Volume 109 Issue Pages 121-134
Keywords Behavioural flexibility; Cognition; Innovation; Problem solving
Abstract Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-6357 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6556
Permanent link to this record
 

 
Author Blaisdell, A.P.; Cook, R.G.
Title (up) Integration of spatial maps in pigeons Type Journal Article
Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 8 Issue 1 Pages 7-16
Keywords Animals; Appetitive Behavior/physiology; Association Learning/*physiology; Columbidae/*physiology; Conditioning, Classical/physiology; *Cues; Problem Solving/*physiology; Space Perception/*physiology; Spatial Behavior/physiology
Abstract The integration of spatial maps in pigeons was investigated using a spatial analog to sensory preconditioning. The pigeons were tested in an open-field arena in which they had to locate hidden food among a 4x4 grid of gravel-filled cups. In phase 1, the pigeons were exposed to a consistent spatial relationship (vector) between landmark L (a red L-shaped block of wood), landmark T (a blue T-shaped block of wood) and the hidden food goal. In phase 2, the pigeons were then exposed to landmark T with a different spatial vector to the hidden food goal. Following phase 2, pigeons were tested with trials on which they were presented with only landmark L to examine the potential integration of the phase 1 and 2 vectors via their shared common elements. When these test trials were preceded by phase 1 and phase 2 reminder trials, pigeons searched for the goal most often at a location consistent with their integration of the L-->T phase 1 and T-->phase 2 goal vectors. This result indicates that integration of spatial vectors acquired during phases 1 and 2 allowed the pigeons to compute a novel L-->goal vector. This suggests that spatial maps may be enlarged by successively integrating additional spatial information through the linkage of common elements.
Address Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA. blaisdell@psych.ucla.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15221636 Approved no
Call Number Equine Behaviour @ team @ Serial 2521
Permanent link to this record