toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Wolf, M.; van Doorn, G.S.; Leimar, O.; Weissing, F.J. doi  openurl
  Title Life-history trade-offs favour the evolution of animal personalities Type Journal Article
  Year 2007 Publication Nature Abbreviated Journal Nature  
  Volume 447 Issue 7144 Pages 581-584  
  Keywords Aggression/physiology/psychology; Animals; Behavior, Animal/*physiology; *Evolution; Exploratory Behavior/physiology; Models, Biological; Personality/*physiology; Predatory Behavior/physiology; Reproduction/physiology; Risk-Taking; Selection (Genetics)  
  Abstract In recent years evidence has been accumulating that personalities are not only found in humans but also in a wide range of other animal species. Individuals differ consistently in their behavioural tendencies and the behaviour in one context is correlated with the behaviour in multiple other contexts. From an adaptive perspective, the evolution of animal personalities is still a mystery, because a more flexible structure of behaviour should provide a selective advantage. Accordingly, many researchers view personalities as resulting from constraints imposed by the architecture of behaviour (but see ref. 12). In contrast, we show here that animal personalities can be given an adaptive explanation. Our argument is based on the insight that the trade-off between current and future reproduction often results in polymorphic populations in which some individuals put more emphasis on future fitness returns than others. Life-history theory predicts that such differences in fitness expectations should result in systematic differences in risk-taking behaviour. Individuals with high future expectations (who have much to lose) should be more risk-averse than individuals with low expectations. This applies to all kinds of risky situations, so individuals should consistently differ in their behaviour. By means of an evolutionary model we demonstrate that this basic principle results in the evolution of animal personalities. It simultaneously explains the coexistence of behavioural types, the consistency of behaviour through time and the structure of behavioural correlations across contexts. Moreover, it explains the common finding that explorative behaviour and risk-related traits like boldness and aggressiveness are common characteristics of animal personalities.  
  Address Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17538618 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4098  
Permanent link to this record
 

 
Author (down) Watve, M.; Thakar, J.; Kale, A.; Puntambekar, S.; Shaikh, I.; Vaze, K.; Jog, M.; Paranjape, S. doi  openurl
  Title Bee-eaters ( Merops orientalis) respond to what a predator can see Type Journal Article
  Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 5 Issue 4 Pages 253-259  
  Keywords Animals; Birds/*physiology; *Predatory Behavior; *Visual Perception  
  Abstract Two sets of experiments are reported that show that the small green bee-eater ( Merops orientalis, a small tropical bird) can appreciate what a predator can or cannot see. Bee-eaters avoid entering the nest in the presence of a potential nest predator. In the first set of experiments bee-eaters entered the nest more frequently when the predator was unable to see the nest from its position, as compared to an approximately equidistant position from which the nest could be seen. In the second set of experiments bee-eaters entered the nest more frequently when the predator was looking away from the nest. The angle of gaze from the nest was associated significantly positively with the probability of entering the nest whereas the angle from the bird was not. Birds showed considerable flexibility as well as individual variation in the possible methods of judging the predator's position and direction of gaze.  
  Address Life Research Foundation, 10, Pranav, 1000/6C Navi Peth, Pune 411030, India. watve@vsnl.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12461603 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2587  
Permanent link to this record
 

 
Author (down) Viscido, S.V.; Miller, M.; Wethey, D.S. openurl 
  Title The dilemma of the selfish herd: the search for a realistic movement rule Type Journal Article
  Year 2002 Publication Journal of theoretical biology Abbreviated Journal J. Theor. Biol.  
  Volume 217 Issue 2 Pages 183-194  
  Keywords Animals; *Behavior, Animal; *Mass Behavior; Models, Biological; *Motor Activity; Predatory Behavior  
  Abstract The selfish herd hypothesis predicts that aggregations form because individuals move toward one another to minimize their own predation risk. The “dilemma of the selfish herd” is that movement rules that are easy for individuals to follow, fail to produce true aggregations, while rules that produce aggregations require individual behavior so complex that one may doubt most animals can follow them. If natural selection at the individual level is responsible for herding behavior, a solution to the dilemma must exist. Using computer simulations, we examined four different movement rules. Relative predation risk was different for all four movement rules (p<0.05). We defined three criteria for measuring the quality of a movement rule. A good movement rule should (a) be statistically likely to benefit an individual that follows it, (b) be something we can imagine most animals are capable of following, and (c) result in a centrally compact flock. The local crowded horizon rule, which allowed individuals to take the positions of many flock-mates into account, but decreased the influence of flock-mates with distance, best satisfied these criteria. The local crowded horizon rule was very sensitive to the animal's perceptive ability. Therefore, the animal's ability to detect its neighbors is an important factor in the dynamics of group formation.  
  Address Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA. viscido@u.washington.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12202112 Approved no  
  Call Number refbase @ user @ Serial 554  
Permanent link to this record
 

 
Author (down) Viscido, S.V.; Miller, M.; Wethey, D.S. doi  openurl
  Title The response of a selfish herd to an attack from outside the group perimeter Type Journal Article
  Year 2001 Publication Journal of theoretical biology Abbreviated Journal J. Theor. Biol.  
  Volume 208 Issue 3 Pages 315-328  
  Keywords Animals; *Behavior, Animal; *Computer Simulation; Models, Biological; *Movement; Predatory Behavior  
  Abstract According to the selfish herd hypothesis, animals can decrease predation risk by moving toward one another if the predator can appear anywhere and will attack the nearest target. Previous studies have shown that aggregations can form using simple movement rules designed to decrease each animal's Domain of Danger. However, if the predator attacks from outside the group's perimeter, these simple movement rules might not lead to aggregation. To test whether simple selfish movement rules would decrease predation risk for those situations when the predator attacks from outside the flock perimeter, we constructed a computer model that allowed flocks of 75 simulated fiddler crabs to react to one another, and to a predator attacking from 7 m away. We attacked simulated crab flocks with predators of different sizes and attack speeds, and computed relative predation risk after 120 time steps. Final trajectories showed flight toward the center of the flock, but curving away from the predator. Path curvature depended on the predator's size and approach speed. The average crab experienced a greater decrease in predation risk when the predator was small or slow moving. Regardless of the predator's size and speed, however, predation risk always decreased as long as crabs took their flock-mates into account. We conclude that, even when flight away from an external predator occurs, the selfish avoidance of danger can lead to aggregation.  
  Address Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, U.S.A. viscido@u.washington.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11207093 Approved no  
  Call Number refbase @ user @ Serial 555  
Permanent link to this record
 

 
Author (down) Thornton, A.; McAuliffe, K. doi  openurl
  Title Teaching in wild meerkats Type Journal Article
  Year 2006 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 313 Issue 5784 Pages 227-229  
  Keywords Animals; *Animals, Wild/psychology; Behavior, Animal; *Herpestidae/psychology; *Learning; *Predatory Behavior; South Africa; *Teaching; Vocalization, Animal  
  Abstract Despite the obvious benefits of directed mechanisms that facilitate the efficient transfer of skills, there is little critical evidence for teaching in nonhuman animals. Using observational and experimental data, we show that wild meerkats (Suricata suricatta) teach pups prey-handling skills by providing them with opportunities to interact with live prey. In response to changing pup begging calls, helpers alter their prey-provisioning methods as pups grow older, thus accelerating learning without the use of complex cognition. The lack of evidence for teaching in species other than humans may reflect problems in producing unequivocal support for the occurrence of teaching, rather than the absence of teaching.  
  Address Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. jant2@cam.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1095-9203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16840701 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2834  
Permanent link to this record
 

 
Author (down) Shettleworth, S.J.; Plowright, C.M. openurl 
  Title How pigeons estimate rates of prey encounter Type Journal Article
  Year 1992 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 18 Issue 3 Pages 219-235  
  Keywords Analysis of Variance; Animals; *Appetitive Behavior; Columbidae; Conditioning, Operant; Food Preferences/*psychology; Motivation; *Predatory Behavior; *Probability Learning; *Reinforcement Schedule; Social Environment  
  Abstract Pigeons were trained on operant schedules simulating successive encounters with prey items. When items were encountered on variable-interval schedules, birds were more likely to accept a poor item (long delay to food) the longer they had just searched, as if they were averaging prey density over a short memory window (Experiment 1). Responding as if the immediate future would be like the immediate past was reversed when a short search predicted a long search next time (Experiment 2). Experience with different degrees of environmental predictability appeared to change the length of the memory window (Experiment 3). The results may reflect linear waiting (Higa, Wynne, & Staddon, 1991), but they differ in some respects. The findings have implications for possible mechanisms of adjusting behavior to current reinforcement conditions.  
  Address Department of Psychology, University of Toronto, Ontario, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1619391 Approved no  
  Call Number refbase @ user @ Serial 382  
Permanent link to this record
 

 
Author (down) Shettleworth, S.J. openurl 
  Title Foraging, memory, and constraints on learning Type Journal Article
  Year 1985 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci  
  Volume 443 Issue Pages 216-226  
  Keywords Animals; Animals, Wild; *Appetitive Behavior; *Avoidance Learning; Birds; *Conditioning, Classical; Discrimination Learning; Food Preferences; *Memory; *Mental Recall; Motivation; *Predatory Behavior; Rats; *Taste  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:3860072 Approved no  
  Call Number refbase @ user @ Serial 384  
Permanent link to this record
 

 
Author (down) Seyfarth, R.M.; Cheney, D.L.; Marler, P. openurl 
  Title Monkey responses to three different alarm calls: evidence of predator classification and semantic communication Type Journal Article
  Year 1980 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 210 Issue 4471 Pages 801-803  
  Keywords *Animal Communication; Animals; Behavior, Animal/*physiology; Cercopithecidae/*physiology; *Fear; Female; Male; Predatory Behavior; Vocalization, Animal  
  Abstract Vervet monkeys give different alarm calls to different predators. Recordings of the alarms played back when predators were absent caused the monkeys to run into trees for leopard alarms, look up for eagle alarms, and look down for snake alarms. Adults call primarily to leopards, martial eagles, and pythons, but infants give leopard alarms to various mammals, eagle alarms to many birds, and snake alarms to various snakelike objects. Predator classification improves with age and experience.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:7433999 Approved no  
  Call Number refbase @ user @ Serial 351  
Permanent link to this record
 

 
Author (down) Reid, P.J.; Shettleworth, S.J. openurl 
  Title Detection of cryptic prey: search image or search rate? Type Journal Article
  Year 1992 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 18 Issue 3 Pages 273-286  
  Keywords Animals; Appetitive Behavior; *Attention; Color Perception; Columbidae; *Discrimination Learning; Food Preferences/psychology; *Imagination; *Mental Recall; *Predatory Behavior  
  Abstract Animals' improvement in capturing cryptic prey with experience has long been attributed to a perceptual mechanism, the specific search image. Detection could also be improved by adjusting rate of search. In a series of studies using both naturalistic and operant search tasks, pigeons searched for wheat, dyed to produce 1 conspicuous and 2 equally cryptic prey types. Contrary to the predictions of the search-rate hypothesis, pigeons given a choice between the 2 cryptic types took the type experienced most recently. However, experience with 1 cryptic type improved accuracy on the other cryptic type, a result inconsistent with a search image specific to 1 prey type. Search image may better be thought of as priming of attention to those features of the prey type that best distinguish the prey from the background.  
  Address University of Toronto, Ontario, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1619395 Approved no  
  Call Number refbase @ user @ Serial 381  
Permanent link to this record
 

 
Author (down) Ratcliffe, J.M.; Fenton, M.B.; Shettleworth, S.J. doi  openurl
  Title Behavioral flexibility positively correlated with relative brain volume in predatory bats Type Journal Article
  Year 2006 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol  
  Volume 67 Issue 3 Pages 165-176  
  Keywords Adaptation, Psychological; Animals; Behavior, Animal/*physiology; Brain/*anatomy & histology/physiology; Chiroptera/*anatomy & histology/*physiology; Organ Size; Predatory Behavior/*physiology  
  Abstract We investigated the potential relationships between foraging strategies and relative brain and brain region volumes in predatory (animal-eating) echolocating bats. The species we considered represent the ancestral state for the order and approximately 70% of living bat species. The two dominant foraging strategies used by echolocating predatory bats are substrate-gleaning (taking prey from surfaces) and aerial hawking (taking airborne prey). We used species-specific behavioral, morphological, and ecological data to classify each of 59 predatory species as one of the following: (1) ground gleaning, (2) behaviorally flexible (i.e., known to both glean and hawk prey), (3) clutter tolerant aerial hawking, or (4) open-space aerial hawking. In analyses using both species level data and phylogenetically independent contrasts, relative brain size was larger in behaviorally flexible species. Further, relative neocortex volume was significantly reduced in bats that aerially hawk prey primarily in open spaces. Conversely, our foraging behavior index did not account for variability in hippocampus and inferior colliculus volume and we discuss these results in the context of past research.  
  Address Department of Zoology, University of Toronto, Toronto, Canada. jmr247@cornell.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16415571 Approved no  
  Call Number refbase @ user @ Serial 358  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print