|   | 
Details
   web
Records
Author Gavrilova, O.; Haluzik, M.; Matsusue, K.; Cutson, J.J.; Johnson, L.; Dietz, K.R.; Nicol, C.J.; Vinson, C.; Gonzalez, F.J.; Reitman, M.L.
Title Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass Type Journal Article
Year 2003 Publication The Journal of biological chemistry Abbreviated Journal J Biol Chem
Volume 278 Issue 36 Pages (down) 34268-34276
Keywords Adipose Tissue/*metabolism; Animals; Blotting, Southern; Blotting, Western; Female; Hypoglycemia/genetics; Insulin Resistance/genetics; Lipid Metabolism; Liver/*metabolism; Liver Diseases/genetics/*metabolism; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; RNA/metabolism; Receptors, Cytoplasmic and Nuclear/*genetics/*physiology; Recombination, Genetic; Thiazoles/pharmacology; *Thiazolidinediones; Time Factors; Transcription Factors/*genetics/*physiology; Triglycerides/*metabolism
Abstract Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor that mediates the antidiabetic effects of thiazolidinediones. PPAR gamma is present in adipose tissue and becomes elevated in fatty livers, but the roles of specific tissues in thiazolidinedione actions are unclear. We studied the function of liver PPAR gamma in both lipoatrophic A-ZIP/F-1 (AZIP) and wild type mice. In AZIP mice, ablation of liver PPAR gamma reduced the hepatic steatosis but worsened the hyperlipidemia, triglyceride clearance, and muscle insulin resistance. Inactivation of AZIP liver PPAR gamma also abolished the hypoglycemic and hypolipidemic effects of rosiglitazone, demonstrating that, in the absence of adipose tissue, the liver is a primary and major site of thiazolidinedione action. In contrast, rosiglitazone remained effective in non-lipoatrophic mice lacking liver PPAR gamma, suggesting that adipose tissue is the major site of thiazolidinedione action in typical mice with adipose tissue. Interestingly, mice without liver PPAR gamma, but with adipose tissue, developed relative fat intolerance, increased adiposity, hyperlipidemia, and insulin resistance. Thus, liver PPAR gamma regulates triglyceride homeostasis, contributing to hepatic steatosis, but protecting other tissues from triglyceride accumulation and insulin resistance.
Address Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. oksanag@bdg10.niddk.nih.gov
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9258 ISBN Medium
Area Expedition Conference
Notes PMID:12805374 Approved no
Call Number refbase @ user @ Serial 81
Permanent link to this record
 

 
Author de Waal, F.B.M.; Dindo, M.; Freeman, C.A.; Hall, M.J.
Title The monkey in the mirror: hardly a stranger Type Journal Article
Year 2005 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 102 Issue 32 Pages (down) 11140-11147
Keywords Analysis of Variance; Animals; Cebus/*physiology; *Discrimination (Psychology); Empathy; Female; Male; Observation; *Recognition (Psychology); *Self Concept; Sex Factors
Abstract It is widely assumed that monkeys see a stranger in the mirror, whereas apes and humans recognize themselves. In this study, we question the former assumption by using a detailed comparison of how monkeys respond to mirrors versus live individuals. Eight adult female and six adult male brown capuchin monkeys (Cebus apella) were exposed twice to three conditions: (i) a familiar same-sex partner, (ii) an unfamiliar same-sex partner, and (iii) a mirror. Females showed more eye contact and friendly behavior and fewer signs of anxiety in front of a mirror than they did when exposed to an unfamiliar partner. Males showed greater ambiguity, but they too reacted differently to mirrors and strangers. Discrimination between conditions was immediate, and blind coders were able to tell the difference between monkeys under the three conditions. Capuchins thus seem to recognize their reflection in the mirror as special, and they may not confuse it with an actual conspecific. Possibly, they reach a level of self-other distinction intermediate between seeing their mirror image as other and recognizing it as self.
Address Living Links Center, Emory University, Atlanta, GA 30322, USA. dewaal@emory.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:16055557 Approved no
Call Number refbase @ user @ Serial 164
Permanent link to this record
 

 
Author Dusek, J.A.; Eichenbaum, H.
Title The hippocampus and memory for orderly stimulus relations Type Journal Article
Year 1997 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 94 Issue 13 Pages (down) 7109-7114
Keywords Animals; Attention; Discrimination (Psychology)/physiology; Hippocampus/anatomy & histology/*physiology; Male; Memory/*physiology; Rats
Abstract Human declarative memory involves a systematic organization of information that supports generalizations and inferences from acquired knowledge. This kind of memory depends on the hippocampal region in humans, but the extent to which animals also have declarative memory, and whether inferential expression of memory depends on the hippocampus in animals, remains a major challenge in cognitive neuroscience. To examine these issues, we used a test of transitive inference pioneered by Piaget to assess capacities for systematic organization of knowledge and logical inference in children. In our adaptation of the test, rats were trained on a set of four overlapping odor discrimination problems that could be encoded either separately or as a single representation of orderly relations among the odor stimuli. Normal rats learned the problems and demonstrated the relational memory organization through appropriate transitive inferences about items not presented together during training. By contrast, after disconnection of the hippocampus from either its cortical or subcortical pathway, rats succeeded in acquiring the separate discrimination problems but did not demonstrate transitive inference, indicating that they had failed to develop or could not inferentially express the orderly organization of the stimulus elements. These findings strongly support the view that the hippocampus mediates a general declarative memory capacity in animals, as it does in humans.
Address Department of Psychology, Boston University, 64 Cummington Street, Boston, MA 02215, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:9192700 Approved no
Call Number refbase @ user @ Serial 607
Permanent link to this record
 

 
Author Reiss, D.; Marino, L.
Title Mirror self-recognition in the bottlenose dolphin: a case of cognitive convergence Type Journal Article
Year 2001 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 98 Issue 10 Pages (down) 5937-5942
Keywords Animals; *Cognition; Dolphins/*physiology; *Visual Perception
Abstract The ability to recognize oneself in a mirror is an exceedingly rare capacity in the animal kingdom. To date, only humans and great apes have shown convincing evidence of mirror self-recognition. Two dolphins were exposed to reflective surfaces, and both demonstrated responses consistent with the use of the mirror to investigate marked parts of the body. This ability to use a mirror to inspect parts of the body is a striking example of evolutionary convergence with great apes and humans.
Address Osborn Laboratories of Marine Sciences, New York Aquarium, Wildlife Conservation Society, Brooklyn, NY 11224, USA. dlr28@columbia.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11331768 Approved no
Call Number Equine Behaviour @ team @ Serial 2822
Permanent link to this record
 

 
Author Mettke-Hofmann, C.; Gwinner, E.
Title Long-term memory for a life on the move Type Journal Article
Year 2003 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 100 Issue 10 Pages (down) 5863-5866
Keywords Animals; Germany; Israel; Memory/*physiology; Models, Biological; Periodicity; Songbirds/*physiology
Abstract Evidence is accumulating that cognitive abilities are shaped by the specific ecological conditions to which animals are exposed. Long-distance migratory birds may provide a striking example of this. Field observations have shown that, at least in some species, a substantial proportion of individuals return to the same breeding, wintering, and stopover sites in successive years. This observation suggests that migrants have evolved special cognitive abilities that enable them to accomplish these feats. Here we show that memory of a particular feeding site persisted for at least 12 months in a long-distance migrant, whereas a closely related nonmigrant could remember such a site for only 2 weeks. Thus, it seems that the migratory lifestyle has influenced the learning and memorizing capacities of migratory birds. These results build a bridge between field observations suggesting special memorization feats of migratory birds and previous neuroanatomical results from the same two species indicating an increase in relative hippocampal size from the first to the second year of life in the migrant but not in the nonmigrant.
Address Max Planck Research Centre for Ornithology, Department of Biological Rhythms and Behaviour, Von-der-Tann-Strasse 7, 82346 Andechs, Germany. mettke-hofmann@erl.ornithol.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:12719527 Approved no
Call Number refbase @ user @ Serial 511
Permanent link to this record
 

 
Author Amé, J.-M.; Halloy, J.; Rivault, C.; Detrain, C.; Deneubourg, J.L.
Title Collegial decision making based on social amplification leads to optimal group formation Type Journal Article
Year 2006 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 103 Issue 15 Pages (down) 5835-5840
Keywords Animals; Blattellidae/*physiology; Choice Behavior; Decision Making; Leadership; *Social Behavior
Abstract Group-living animals are often faced with choosing between one or more alternative resource sites. A central question in such collective decision making includes determining which individuals induce the decision and when. This experimental and theoretical study of shelter selection by cockroach groups demonstrates that choices can emerge through nonlinear interaction dynamics between equal individuals without perfect knowledge or leadership. We identify a simple mechanism whereby a decision is taken on the move with limited information and signaling and without comparison of available opportunities. This mechanism leads to optimal mean benefit for group individuals. Our model points to a generic self-organized collective decision-making process independent of animal species.
Address Service d'Ecologie Sociale CP231, Universite Libre de Bruxelles, Avenue F. D. Roosevelt 50, B-1050 Brussels, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:16581903 Approved no
Call Number Equine Behaviour @ team @ Serial 2042
Permanent link to this record
 

 
Author Hampton, R.R.
Title Rhesus monkeys know when they remember Type Journal Article
Year 2001 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 98 Issue 9 Pages (down) 5359-5362
Keywords Animals; Choice Behavior/physiology; Cognition/*physiology; Cues; Food Preferences/psychology; Macaca mulatta/*physiology/*psychology; Male; Memory/*physiology; Probability; Psychological Tests; Reproducibility of Results; Sensitivity and Specificity
Abstract Humans are consciously aware of some memories and can make verbal reports about these memories. Other memories cannot be brought to consciousness, even though they influence behavior. This conspicuous difference in access to memories is central in taxonomies of human memory systems but has been difficult to document in animal studies, suggesting that some forms of memory may be unique to humans. Here I show that rhesus macaque monkeys can report the presence or absence of memory. Although it is probably impossible to document subjective, conscious properties of memory in nonverbal animals, this result objectively demonstrates an important functional parallel with human conscious memory. Animals able to discern the presence and absence of memory should improve accuracy if allowed to decline memory tests when they have forgotten, and should decline tests most frequently when memory is attenuated experimentally. One of two monkeys examined unequivocally met these criteria under all test conditions, whereas the second monkey met them in all but one case. Probe tests were used to rule out “cueing” by a wide variety of environmental and behavioral stimuli, leaving detection of the absence of memory per se as the most likely mechanism underlying the monkeys' abilities to selectively decline memory tests when they had forgotten.
Address Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Building 49, Room 1B-80, Bethesda, MD 20892, USA. robert@ln.nimh.nih.gov
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11274360 Approved no
Call Number Equine Behaviour @ team @ Serial 2824
Permanent link to this record
 

 
Author Griffin, D.R.
Title Animals know more than we used to think Type
Year 2001 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 98 Issue 9 Pages (down) 4833-4834
Keywords Animal Communication; Animals; Attention/physiology; Brain/physiology; Choice Behavior/physiology; Cognition/*physiology; Humans; Macaca mulatta/physiology/*psychology; Memory/*physiology; Optic Disk/physiology; Psychological Tests
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11320232 Approved no
Call Number Equine Behaviour @ team @ Serial 2823
Permanent link to this record
 

 
Author Arnold, W.; Ruf, T.; Kuntz, R.
Title Seasonal adjustment of energy budget in a large wild mammal, the Przewalski horse (Equus ferus przewalskii) II. Energy expenditure Type Journal Article
Year 2006 Publication The Journal of experimental biology Abbreviated Journal J Exp Biol
Volume 209 Issue Pt 22 Pages (down) 4566-4573
Keywords Animals; Animals, Wild/*physiology; Body Temperature; Body Temperature Regulation; Eating; *Energy Metabolism; Female; Heart Rate; Horses/*physiology; Male; Motor Activity; Pregnancy; Reproduction; *Seasons
Abstract Many large mammals show pronounced seasonal fluctuations of metabolic rate (MR). It has been argued, based on studies in ruminants, that this variation merely results from different levels of locomotor activity (LA), and heat increment of feeding (HI). However, a recent study in red deer (Cervus elaphus) identified a previously unknown mechanism in ungulates--nocturnal hypometabolism--that contributed significantly to reduced energy expenditure, mainly during late winter. The relative contribution of these different mechanisms to seasonal adjustments of MR is still unknown, however. Therefore, in the study presented here we quantified for the first time the independent contribution of thermoregulation, LA and HI to heart rate (f(H)) as a measure of MR in a free-roaming large ungulate, the Przewalski horse or Takhi (Equus ferus przewalskii Poljakow). f(H) varied periodically throughout the year with a twofold increase from a mean of 44 beats min(-1) during December and January to a spring peak of 89 beats min(-1) at the beginning of May. LA increased from 23% per day during December and January to a mean level of 53% per day during May, and declined again thereafter. Daily mean subcutaneous body temperature (T(s)) declined continuously during winter and reached a nadir at the beginning of April (annual range was 5.8 degrees C), well after the annual low of air temperature and LA. Lower T(s) during winter contributed considerably to the reduction in f(H). In addition to thermoregulation, f(H) was affected by reproduction, LA, HI and unexplained seasonal variation, presumably reflecting to some degree changes in organ mass. The observed phase relations of seasonal changes indicate that energy expenditure was not a consequence of energy uptake but is under endogenous control, preparing the organism well in advance of seasonal energetic demands.
Address Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1, 1160 Vienna, Austria. walter.arnold@vu-wien.ac.at
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:17079726 Approved no
Call Number Serial 1782
Permanent link to this record
 

 
Author Cheung, C.; Akiyama, T.E.; Ward, J.M.; Nicol, C.J.; Feigenbaum, L.; Vinson, C.; Gonzalez, F.J.
Title Diminished hepatocellular proliferation in mice humanized for the nuclear receptor peroxisome proliferator-activated receptor alpha Type Journal Article
Year 2004 Publication Cancer research Abbreviated Journal Cancer Res
Volume 64 Issue 11 Pages (down) 3849-3854
Keywords Animals; Anticholesteremic Agents/pharmacology; Carcinogens/pharmacology; Cell Division; DNA Replication/drug effects; Fatty Acids/metabolism; Hepatocytes/cytology/drug effects/metabolism/*physiology; Humans; Mice; Mice, Transgenic; Oxidation-Reduction; Peroxisome Proliferators/pharmacology; Pyrimidines/pharmacology; Receptors, Cytoplasmic and Nuclear/genetics/*physiology; Species Specificity; Transcription Factors/genetics/*physiology
Abstract Lipid-lowering fibrate drugs function as agonists for the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). Sustained activation of PPARalpha leads to the development of liver tumors in rats and mice. However, humans appear to be resistant to the induction of peroxisome proliferation and the development of liver cancer by fibrate drugs. The molecular basis of this species difference is not known. To examine the mechanism determining species differences in peroxisome proliferator response between mice and humans, a PPARalpha-humanized mouse line was generated in which the human PPARalpha was expressed in liver under control of the tetracycline responsive regulatory system. The PPARalpha-humanized and wild-type mice responded to treatment with the potent PPARalpha ligand Wy-14643 as revealed by induction of genes encoding peroxisomal and mitochondrial fatty acid metabolizing enzymes and resultant decrease of serum triglycerides. However, surprisingly, only the wild-type mice and not the PPARalpha-humanized mice exhibited hepatocellular proliferation as revealed by elevation of cell cycle control genes, increased incorporation of 5-bromo-2'-deoxyuridine into hepatocyte nuclei, and hepatomegaly. These studies establish that following ligand activation, the PPARalpha-mediated pathways controlling lipid metabolism are independent from those controlling the cell proliferation pathways. These findings also suggest that structural differences between human and mouse PPARalpha are responsible for the differential susceptibility to the development of hepatocarcinomas observed after treatment with fibrates. The PPARalpha-humanized mice should serve as models for use in drug development and human risk assessment and to determine the mechanism of hepatocarcinogenesis of peroxisome proliferators.
Address Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-5472 ISBN Medium
Area Expedition Conference
Notes PMID:15172993 Approved no
Call Number refbase @ user @ Serial 74
Permanent link to this record