toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Voss, B.; Mohr, E.; Krzywanek, H. openurl 
  Title Effects of aqua-treadmill exercise on selected blood parameters and on heart-rate variability of horses Type Journal Article
  Year 2002 Publication Journal of Veterinary Medicine. A, Physiology, Pathology, Clinical Medicine Abbreviated Journal J Vet Med A Physiol Pathol Clin Med  
  Volume 49 Issue 3 Pages 137-143  
  Keywords Animals; Electrocardiography/veterinary; Exercise Test/veterinary; Female; Heart Rate/*physiology; Hemoglobins/metabolism; Horses/*physiology; Lactic Acid/blood; Male; Physical Conditioning, Animal/*physiology; Water  
  Abstract The objectives of the present study were to investigate the effects of Aquatraining of horses (aqua-treadmill exercise; treadmill manufactured by Equitech – L.u.S. Equipment, Warendorf, Germany) on selected blood parameters [lactic acid concentration (mmol/l), haemoglobin content (g/l)] and on heart-rate variability (HRV) [heart rate (beats per min; b.p.m.), standard deviation of all NN-intervals (SDNN; ms), normalized power of the low and high frequency band (LFnorm, Hfnorm; au), % recurrence, % determinism and ratio(corr)]. Seven horses performed six exercise tests with different work loads (walking (x = 1.56 +/- 0.08 m/s) and trotting (x = 2.9 +/- 0.13 m/s): dry, water above the carpus and water above the elbow). The standardized test-protocol was: 5 min warm-up at walk while the water was pumped in, followed by the 20-min exercise period at walk or trot, followed by a 5-min walk while pumping out the water. Blood samples were taken prior to each test at rest in the stable, as well as exactly 5 min after the end of the 20-min exercise period. Electrocardiograms were recorded during rest and the 20-min exercise period. Compared to rest, neither the chosen velocities, the two water levels, nor the dry tests led to a significant increase of the lactic acid concentration in any horse. The haemoglobin content showed a significant increase as a result of exercise. Significant differences could be found between the heart rates at rest and the six exercise tests and between the mean of the levels 'walking' and the mean of the levels 'trotting'. An exercise-induced change of HRV was characterized by a decreasing SDNN, a significantly higher LFnorm (sympathetic influence) combined with a significantly lower HF(norm) power (parasympathetic activity) and a rising degree of order (significantly higher % determinism and nearly unchanged % recurrence) and stability (significantly rising ratio(corr)) of the recurrence plot. In conclusion, the used training-protocol for aqua-treadmill exercises only represents a medium-sized aerobic work load for horses, but the different levels of burden were indicated especially by changes in HRV.  
  Address Institute for Veterinary Physiology of the Free University Berlin, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0931-184X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12019954 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4049  
Permanent link to this record
 

 
Author (up) Weishaupt, M.A.; Wiestner, T.; von Peinen, K.; Waldern, N.; Roepstorff, L.; van Weeren, R.; Meyer, H.; Johnston, C. openurl 
  Title Effect of head and neck position on vertical ground reaction forces and interlimb coordination in the dressage horse ridden at walk and trot on a treadmill Type Journal Article
  Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 36 Pages 387-392  
  Keywords Animals; Biomechanics; Exercise Test/instrumentation/methods/*veterinary; Forelimb/physiology; Gait; Head/physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Male; Neck/physiology; Physical Conditioning, Animal/methods/*physiology; Posture; Statistics, Nonparametric; Walking/*physiology  
  Abstract REASONS FOR PERFORMING STUDY: Little is known in quantitative terms about the influence of different head-neck positions (HNPs) on the loading pattern of the locomotor apparatus. Therefore it is difficult to predict whether a specific riding technique is beneficial for the horse or if it may increase the risk for injury. OBJECTIVE: To improve the understanding of forelimb-hindlimb balance and its underlying temporal changes in relation to different head and neck positions. METHODS: Vertical ground reaction force and time parameters of each limb were measured in 7 high level dressage horses while being ridden at walk and trot on an instrumented treadmill in 6 predetermined HNPs: HNP1 – free, unrestrained with loose reins; HNP2 – neck raised, bridge of the nose in front of the vertical; HNP3 – neck raised, bridge of the nose behind the vertical; HNP4 – neck lowered and flexed, bridge of the nose considerably behind the vertical; HNP5 – neck extremely elevated and bridge of the nose considerably in front of the vertical; HNP6 – neck and head extended forward and downward. Positions were judged by a qualified dressage judge. HNPs were assessed by comparing the data to a velocity-matched reference HNP (HNP2). Differences were tested using paired t test or Wilcoxon signed rank test (P<0.05). RESULTS: At the walk, stride duration and overreach distance increased in HNP1, but decreased in HNP3 and HNP5. Stride impulse was shifted to the forehand in HNP1 and HNP6, but shifted to the hindquarters in HNP5. At the trot, stride duration increased in HNP4 and HNP5. Overreach distance was shorter in HNP4. Stride impulse shifted to the hindquarters in HNP5. In HNP1 peak forces decreased in the forelimbs; in HNP5 peak forces increased in fore- and hindlimbs. CONCLUSIONS: HNP5 had the biggest impact on limb timing and load distribution and behaved inversely to HNP1 and HNP6. Shortening of forelimb stance duration in HNP5 increased peak forces although the percentage of stride impulse carried by the forelimbs decreased. POTENTIAL RELEVANCE: An extremely high HNP affects functionality much more than an extremely low neck.  
  Address Equine Hospital, University of Zurich, CH-8057 Zurich, Switzerland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17402453 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3704  
Permanent link to this record
 

 
Author (up) Winkelmayr, B.; Peham, C.; Fruhwirth, B.; Licka, T.; Scheidl, M. openurl 
  Title Evaluation of the force acting on the back of the horse with an English saddle and a side saddle at walk, trot and canter Type Journal Article
  Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 36 Pages 406-410  
  Keywords Animals; Back/*physiology; Back Pain/etiology/veterinary; Biomechanics; Exercise Test/veterinary; Female; Gait/physiology; Horse Diseases/etiology; Horses/*physiology; Humans; Locomotion/physiology; Male; Movement/*physiology; *Physical Conditioning, Animal/instrumentation/methods/physiology; *Pressure; Weight-Bearing/*physiology  
  Abstract REASONS FOR PERFORMING STUDY: Force transmission under an English saddle (ES) at walk, trot and canter is commonly evaluated, but the influence of a side saddle (SS) on the equine back has not been documented. HYPOTHESIS: Force transmission under a SS, with its asymmetric construction, is different from an ES in walk, trot and canter, expressed in maximum overall force (MOF), force in the quarters of the saddle mat, and centre of pressure (COP). The biomechanics of the equine back are different under a SS compared to ES. METHODS: Thirteen horses without clinical signs of back pain ridden in an indoor riding school with both saddles were measured using an electronic saddle sensor pad. Synchronous kinematic measurements were carried out with tracing markers placed along the back in front of (withers, W) and behind the saddle (4th lumbar vertebra, L4). At least 6 motion cycles at walk, trot and canter with both saddles (ES, SS) were measured. Out of the pressure distribution the maximum overall force (MOF) and the location of the centre of pressure (COP) were calculated. RESULTS: Under the SS the centre of pressure was located to the right of the median and slightly caudal compared to the COP under the ES in all gaits. The MOF was significantly different (P<0.01) between saddles. At walk, L4 showed significantly larger (P<0.01) vertical excursions under the ES. Under the SS relative horizontal movement of W was significantly reduced (P<0.01) at trot, and at canter the transversal movement was significantly reduced (P<0.01) . In both trot and canter, no significant differences in the movement of L4 were documented. CONCLUSIONS AND POTENTIAL RELEVANCE: The results demonstrate that the load under a SS creates asymmetric force transmission under the saddle, and also influences back movement. To change the load distribution on the back of horses with potential back pain and as a training variation, a combination of both riding styles is suitable.  
  Address Department V, Clinic of Orthopaedics in Ungulates, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17402456 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4007  
Permanent link to this record
 

 
Author (up) Young, L.E.; Rogers, K.; Wood, J.L.N. doi  openurl
  Title Left ventricular size and systolic function in Thoroughbred racehorses and their relationships to race performance Type Journal Article
  Year 2005 Publication Journal of Applied Physiology (Bethesda, Md. : 1985) Abbreviated Journal J Appl Physiol  
  Volume 99 Issue 4 Pages 1278-1285  
  Keywords *Adaptation, Physiological; Aging/physiology; Animal Husbandry; Animals; *Echocardiography; Female; Heart/*physiology; Heart Ventricles; Horses/*physiology; Male; *Physical Conditioning, Animal; Running/*physiology; Stroke Volume; Systole; Task Performance and Analysis  
  Abstract Cardiac morphology in human athletes is known to differ, depending on the sports-specific endurance component of their events, whereas anecdotes abound about superlative athletes with large hearts. As the heart determines stroke volume and maximum O(2) uptake in mammals, we undertook a study to test the hypothesis that the morphology of the equine heart would differ between trained horses, depending on race type, and that left ventricular size would be greatest in elite performers. Echocardiography was performed in 482 race-fit Thoroughbreds engaged in either flat (1,000-2,500 m) or jump racing (3,200-6,400 m). Body weight and sex-adjusted measures of left ventricular size were largest in horses engaged in jump racing over fixed fences, compared with horses running shorter distances on the flat (range 8-16%). The observed differences in cardiac morphologies suggest that subtle differences in training and competition result in cardiac adaptations that are appropriate to the endurance component of the horses' event. Derived left ventricular mass was strongly associated with published rating (quality) in horses racing over longer distances in jump races (P < or = 0.001), but less so for horses in flat races. Rather, left ventricular ejection fraction and left ventricular mass combined were positively associated with race rating in older flat racehorses running over sprint (<1,408 m) and longer distances (>1,408 m), explaining 25-35% of overall variation in performance, as well as being closely associated with performance in longer races over jumps (23%). These data provide the first direct evidence that cardiac size influences athletic performance in a group of mammalian running athletes.  
  Address Centre for Equine Studies, Animal Health Trust, Newmarket, Suffolk, UK. lesley.young@aht.org.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 8750-7587 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15920096 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3768  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print