toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cole, P.D.; Adamo, S.A. doi  openurl
  Title Cuttlefish (Sepia officinalis: Cephalopoda) hunting behavior and associative learning Type Journal Article
  Year (up) 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 1 Pages 27-30  
  Keywords Animals; *Appetitive Behavior; *Association Learning; *Conditioning, Classical; Female; Male; *Mollusca; Photic Stimulation; *Predatory Behavior  
  Abstract Because most learning studies in cephalopods have been performed on octopods, it remains unclear whether such abilities are specific to octopus, or whether they correlate with having a larger and more centrally organized brain. To investigate associative learning in a different cephalopod, six sexually mature cuttlefish (Sepia officinalis) participated in a counterbalanced, within-subjects, appetitive, classical conditioning procedure. Two plastic spheres (conditioned stimuli, CSs), differing in brightness, were presented sequentially. Presentation of the CS+ was followed 5 s later by a live feeder fish (unconditioned stimulus, US). Cuttlefish began to attack the CS+ with the same type of food-acquisition seizures used to capture the feeder fish. After seven blocks of training (42 presentations of each CS) the difference in seizure probability between CS+ and CS- trials more than doubled; and was found to be significantly higher in late versus early blocks. These results indicate that cuttlefish exhibit autoshaping under some conditions. The possible ecological significance of this type of learning is briefly discussed.  
  Address Department of Psychology, Dalhousie University Halifax, Nova Scotia, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15592760 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2500  
Permanent link to this record
 

 
Author Werner, C.W.; Tiemann, I.; Cnotka, J.; Rehkamper, G. doi  openurl
  Title Do chickens (Gallus gallus f. domestica) decompose visual figures? Type Journal Article
  Year (up) 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 2 Pages 129-140  
  Keywords Animals; *Chickens; Conditioning, Classical; *Discrimination Learning; Female; *Pattern Recognition, Visual; Photic Stimulation; *Visual Perception  
  Abstract To investigate whether learning to discriminate between visual compound stimuli depends on decomposing them into constituting features, hens were first trained to discriminate four features (red, green, horizontal, vertical) from two dimensions (colour, line orientation). After acquisition, hens were trained with compound stimuli made up from these dimensions in two ways: a separable (line on a coloured background) stimulus and an integral one (coloured line). This compound training included a reversal of reinforcement of only one of the two dimensions (half-reversal). After having achieved the compound stimulus discrimination, a second dimensional training identical to the first was performed. Finally, in the second compound training the other dimension was reversed. Two major results were found: (1) an interaction between the dimension reversed and the type of compound stimulus: in compound training with colour reversal, separable compound stimuli were discriminated worse than integral compounds and vice versa in compound training with line orientation reversed. (2) Performance in the second compound training was worse than in the first one. The first result points to a similar mode of processing for separable and integral compounds, whereas the second result shows that the whole stimulus is psychologically superior to its constituting features. Experiment 2 repeated experiment 1 using line orientation stimuli of reversed line and background brightness. Nevertheless, the results were similar to experiment 1. Results are discussed in the framework of a configural exemplar theory of discrimination that assumes the representation of the whole stimulus situation combined with transfer based on a measure of overall similarity.  
  Address C. and O. Vogt Institute of Brain Research, Heinrich Heine University Dusseldorf, Universitatsstr. 1, 40225, Dusseldorf, Germany. wernerc@uni-duesseldorf.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15490291 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2503  
Permanent link to this record
 

 
Author Moses, S.N.; Villate, C.; Ryan, J.D. doi  openurl
  Title An investigation of learning strategy supporting transitive inference performance in humans compared to other species Type Journal Article
  Year (up) 2006 Publication Neuropsychologia Abbreviated Journal Neuropsychologia  
  Volume 44 Issue 8 Pages 1370-1387  
  Keywords Adult; Analysis of Variance; Association Learning/*physiology; *Cognition; *Concept Formation; Female; Humans; *Logic; Male; Pattern Recognition, Visual/physiology; Photic Stimulation/methods; Reaction Time/physiology  
  Abstract Generalizations about neural function are often drawn from non-human animal models to human cognition, however, the assumption of cross-species conservation may sometimes be invalid. Humans may use different strategies mediated by alternative structures, or similar structures may operate differently within the context of the human brain. The transitive inference problem, considered a hallmark of logical reasoning, can be solved by non-human species via associative learning rather than logic. We tested whether humans use similar strategies to other species for transitive inference. Results are crucial for evaluating the validity of widely accepted assumptions of similar neural substrates underlying performance in humans and other animals. Here we show that successful transitive inference in humans is unrelated to use of associative learning strategies and is associated with ability to report the hierarchical relationship among stimuli. Our work stipulates that cross-species generalizations must be interpreted cautiously, since performance on the same task may be mediated by different strategies and/or neural systems.  
  Address Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Canada. smoses@rotman-baycrest.on.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-3932 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16503340 Approved no  
  Call Number refbase @ user @ Serial 153  
Permanent link to this record
 

 
Author Plotnik, J.M.; de Waal, F.B.M.; Reiss, D. doi  openurl
  Title Self-recognition in an Asian elephant Type Journal Article
  Year (up) 2006 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.  
  Volume 103 Issue 45 Pages 17053-17057  
  Keywords Animals; Asia; *Behavior, Animal; Cognition; Elephants/*psychology; Female; Photic Stimulation  
  Abstract Considered an indicator of self-awareness, mirror self-recognition (MSR) has long seemed limited to humans and apes. In both phylogeny and human ontogeny, MSR is thought to correlate with higher forms of empathy and altruistic behavior. Apart from humans and apes, dolphins and elephants are also known for such capacities. After the recent discovery of MSR in dolphins (Tursiops truncatus), elephants thus were the next logical candidate species. We exposed three Asian elephants (Elephas maximus) to a large mirror to investigate their responses. Animals that possess MSR typically progress through four stages of behavior when facing a mirror: (i) social responses, (ii) physical inspection (e.g., looking behind the mirror), (iii) repetitive mirror-testing behavior, and (iv) realization of seeing themselves. Visible marks and invisible sham-marks were applied to the elephants' heads to test whether they would pass the litmus “mark test” for MSR in which an individual spontaneously uses a mirror to touch an otherwise imperceptible mark on its own body. Here, we report a successful MSR elephant study and report striking parallels in the progression of responses to mirrors among apes, dolphins, and elephants. These parallels suggest convergent cognitive evolution most likely related to complex sociality and cooperation.  
  Address Living Links, Yerkes National Primate Research Center, and Department of Psychology, Emory University, 532 North Kligo Circle, Atlanta, GA 30322, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17075063 Approved no  
  Call Number refbase @ user @ Serial 408  
Permanent link to this record
 

 
Author Benard, J.; Stach, S.; Giurfa, M. doi  openurl
  Title Categorization of visual stimuli in the honeybee Apis mellifera Type Journal Article
  Year (up) 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 257-270  
  Keywords Animals; Bees/*physiology; Classification; Cognition/*physiology; Discrimination Learning/*physiology; Generalization, Stimulus/physiology; Pattern Recognition, Visual/*physiology; Photic Stimulation; Transfer (Psychology)/*physiology; Visual Perception/*physiology  
  Abstract Categorization refers to the classification of perceptual input into defined functional groups. We present and discuss evidence suggesting that stimulus categorization can also be found in an invertebrate, the honeybee Apis mellifera, thus underlining the generality across species of this cognitive process. Honeybees show positive transfer of appropriate responding from a trained to a novel set of visual stimuli. Such a transfer was demonstrated for specific isolated features such as symmetry or orientation, but also for assemblies (layouts) of features. Although transfer from training to novel stimuli can be achieved by stimulus generalization of the training stimuli, most of these transfer tests involved clearly distinguishable stimuli for which generalization would be reduced. Though in most cases specific experimental controls such as stimulus balance and discriminability are still required, it seems appropriate to characterize the performance of honeybees as reflecting categorization. Further experiments should address the issue of which categorization theory accounts better for the visual performances of honeybees.  
  Address Centre de Recherches sur la Cognition Animale (UMR 5169), CNRS – Universite Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 4, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16909238 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2446  
Permanent link to this record
 

 
Author Aust, U.; Huber, L. doi  openurl
  Title Picture-object recognition in pigeons: evidence of representational insight in a visual categorization task using a complementary information procedure Type Journal Article
  Year (up) 2006 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 32 Issue 2 Pages 190-195  
  Keywords Animals; Classification; *Cognition; Columbidae; *Discrimination Learning; *Form Perception; *Generalization (Psychology); Humans; Perceptual Closure; Photic Stimulation; Photography; *Recognition (Psychology)  
  Abstract Success in tasks requiring categorization of pictorial stimuli does not prove that a subject understands what the pictures stand for. The ability to achieve representational insight is by no means a trivial one because it exceeds mere detection of 2-D features present in both the pictorial images and their referents. So far, evidence for such an ability in nonhuman species is weak and inconclusive. Here, the authors report evidence of representational insight in pigeons. After being trained on pictures of incomplete human figures, the birds responded significantly more to pictures of the previously missing parts than to nonrepresentative stimuli, which demonstrates that they actually recognized the pictures' representational content.  
  Address Department for Behavior, Neurobiology and Cognition, University of Vienna, Austria. ulrike.aust@univie.ac.at  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16634663 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2759  
Permanent link to this record
 

 
Author Heschl, A.; Burkart, J. doi  openurl
  Title A new mark test for mirror self-recognition in non-human primates Type Journal Article
  Year (up) 2006 Publication Primates Abbreviated Journal Primates  
  Volume 47 Issue 3 Pages 187-198  
  Keywords Animals; *Behavior, Animal; Callithrix/*physiology; Cognition/*physiology; Discrimination (Psychology)/physiology; Female; Male; Photic Stimulation; *Self Concept  
  Abstract For 30 years Gallup's (Science 167:86-87, 1970) mark test, which consists of confronting a mirror-experienced test animal with its own previously altered mirror image, usually a color mark on forehead, eyebrow or ear, has delivered valuable results about the distribution of visual self-recognition in non-human primates. Chimpanzees, bonobos, orangutans and, less frequently, gorillas can learn to correctly understand the reflection of their body in a mirror. However, the standard version of the mark test is good only for positively proving the existence of self-recognition. Conclusive statements about the lack of self-recognition are more difficult because of the methodological constraints of the test. This situation has led to a persistent controversy about the power of Gallup's original technique. We devised a new variant of the test which permits more unequivocal decisions about both the presence and absence of self-recognition. This new procedure was tested with marmoset monkeys (Callithrix jacchus), following extensive training with mirror-related tasks to facilitate performance in the standard mark test. The results show that a slightly altered mark test with a new marking substance (chocolate cream) can help to reliably discriminate between true negative results, indicating a real lack of ability to recognize oneself in a mirror, from false negative results that are due to methodological particularities of the standard test. Finally, an evolutionary hypothesis is put forward as to why many primates can use a mirror instrumentally – i.e. know how to use it for grasping at hidden objects – while failing in the decisive mark test.  
  Address Konrad Lorenz Institute for Evolution and Cognition Research, Adolf Lorenz Gasse 2, 3422, Altenberg, Austria. adolf.heschl@uni-graz.at  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-8332 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16432640 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2810  
Permanent link to this record
 

 
Author De Boyer Des Roches, A.; Richard-Yris, M.-A.; Henry, S.; Ezzaouia, M.; Hausberger, M. url  doi
openurl 
  Title Laterality and emotions: visual laterality in the domestic horse (Equus caballus) differs with objects' emotional value Type Journal Article
  Year (up) 2008 Publication Physiology & Behavior Abbreviated Journal Physiol. Behav.  
  Volume 94 Issue 3 Pages 487-490  
  Keywords Animals; Animals, Newborn; Behavior, Animal/physiology; Dominance, Ocular/*physiology; *Emotions; Exploratory Behavior/physiology; Female; Horses/*physiology; Olfactory Pathways/physiology; Pattern Recognition, Visual/*physiology; Photic Stimulation; Pregnancy; Statistics, Nonparametric; Visual Fields/physiology  
  Abstract Lateralization of emotions has received great attention in the last decades, both in humans and animals, but little interest has been given to side bias in perceptual processing. Here, we investigated the influence of the emotional valence of stimuli on visual and olfactory explorations by horses, a large mammalian species with two large monocular visual fields and almost complete decussation of optic fibres. We confronted 38 Arab mares to three objects with either a positive, negative or neutral emotional valence (novel object). The results revealed a gradient of exploration of the 3 objects according to their emotional value and a clear asymmetry in visual exploration. When exploring the novel object, mares used preferentially their right eyes, while they showed a slight tendency to use their left eyes for the negative object. No asymmetry was evidenced for the object with the positive valence. A trend for an asymmetry in olfactory investigation was also observed. Our data confirm the role of the left hemisphere in assessing novelty in horses like in many vertebrate species and the possible role of the right hemisphere in processing negative emotional responses. Our findings also suggest the importance of both hemispheres in the processing positive emotions. This study is, to our knowledge, the first to demonstrate clearly that the emotional valence of a stimulus induces a specific visual lateralization pattern.  
  Address UMR CNRS 6552 Ethologie-Evolution-Ecologie, Universite de Rennes 1, Avenue du General Leclerc, Campus de Beaulieu, F-35042 Rennes Cedex, France. a.de-boyer@wanadoo.fr  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9384 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:18455205 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4762  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print