toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zentall, T.R. doi  openurl
  Title Configural/holistic processing or differential element versus compound similarity Type Journal Article
  Year 2005 Publication Animal cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 2 Pages 141-142  
  Keywords Animals; *Chickens; Conditioning, Classical; *Discrimination Learning; Female; *Pattern Recognition, Visual; Photic Stimulation; *Visual Perception  
  Abstract Before accepting a configural or holistic account of visual perception, one should be sure that an analytic (elemental) account does not provide an equal or better explanation of the results. I suggest that when one forms a compound of a color and a line orientation with one element previously trained as an S+ and the other as an S-, the resulting transfer found will depend on the relative salience of the two elements, and most important, the similarity of the compound to each of the training stimuli. Thus, if a line orientation is placed on a colored background (a separable compound), it will appear more like the colored field used in training, and color will control responding. However, if the line itself is colored (an integral compound), the compound will appear more like the line used in training, and line orientation will control responding. Not only does this account do a better job of explaining the data but it is simpler and it is testable.  
  Address Department of Psychology, University of Kentucky, Lexington, KY 40506-0044, USA. zentall@uky.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15449103 Approved no  
  Call Number refbase @ user @ Serial 229  
Permanent link to this record
 

 
Author Benard, J.; Stach, S.; Giurfa, M. doi  openurl
  Title Categorization of visual stimuli in the honeybee Apis mellifera Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 257-270  
  Keywords Animals; Bees/*physiology; Classification; Cognition/*physiology; Discrimination Learning/*physiology; Generalization, Stimulus/physiology; Pattern Recognition, Visual/*physiology; Photic Stimulation; Transfer (Psychology)/*physiology; Visual Perception/*physiology  
  Abstract Categorization refers to the classification of perceptual input into defined functional groups. We present and discuss evidence suggesting that stimulus categorization can also be found in an invertebrate, the honeybee Apis mellifera, thus underlining the generality across species of this cognitive process. Honeybees show positive transfer of appropriate responding from a trained to a novel set of visual stimuli. Such a transfer was demonstrated for specific isolated features such as symmetry or orientation, but also for assemblies (layouts) of features. Although transfer from training to novel stimuli can be achieved by stimulus generalization of the training stimuli, most of these transfer tests involved clearly distinguishable stimuli for which generalization would be reduced. Though in most cases specific experimental controls such as stimulus balance and discriminability are still required, it seems appropriate to characterize the performance of honeybees as reflecting categorization. Further experiments should address the issue of which categorization theory accounts better for the visual performances of honeybees.  
  Address Centre de Recherches sur la Cognition Animale (UMR 5169), CNRS – Universite Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 4, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16909238 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2446  
Permanent link to this record
 

 
Author Cole, P.D.; Adamo, S.A. doi  openurl
  Title Cuttlefish (Sepia officinalis: Cephalopoda) hunting behavior and associative learning Type Journal Article
  Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 1 Pages 27-30  
  Keywords Animals; *Appetitive Behavior; *Association Learning; *Conditioning, Classical; Female; Male; *Mollusca; Photic Stimulation; *Predatory Behavior  
  Abstract Because most learning studies in cephalopods have been performed on octopods, it remains unclear whether such abilities are specific to octopus, or whether they correlate with having a larger and more centrally organized brain. To investigate associative learning in a different cephalopod, six sexually mature cuttlefish (Sepia officinalis) participated in a counterbalanced, within-subjects, appetitive, classical conditioning procedure. Two plastic spheres (conditioned stimuli, CSs), differing in brightness, were presented sequentially. Presentation of the CS+ was followed 5 s later by a live feeder fish (unconditioned stimulus, US). Cuttlefish began to attack the CS+ with the same type of food-acquisition seizures used to capture the feeder fish. After seven blocks of training (42 presentations of each CS) the difference in seizure probability between CS+ and CS- trials more than doubled; and was found to be significantly higher in late versus early blocks. These results indicate that cuttlefish exhibit autoshaping under some conditions. The possible ecological significance of this type of learning is briefly discussed.  
  Address Department of Psychology, Dalhousie University Halifax, Nova Scotia, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15592760 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2500  
Permanent link to this record
 

 
Author Werner, C.W.; Tiemann, I.; Cnotka, J.; Rehkamper, G. doi  openurl
  Title Do chickens (Gallus gallus f. domestica) decompose visual figures? Type Journal Article
  Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 2 Pages 129-140  
  Keywords Animals; *Chickens; Conditioning, Classical; *Discrimination Learning; Female; *Pattern Recognition, Visual; Photic Stimulation; *Visual Perception  
  Abstract To investigate whether learning to discriminate between visual compound stimuli depends on decomposing them into constituting features, hens were first trained to discriminate four features (red, green, horizontal, vertical) from two dimensions (colour, line orientation). After acquisition, hens were trained with compound stimuli made up from these dimensions in two ways: a separable (line on a coloured background) stimulus and an integral one (coloured line). This compound training included a reversal of reinforcement of only one of the two dimensions (half-reversal). After having achieved the compound stimulus discrimination, a second dimensional training identical to the first was performed. Finally, in the second compound training the other dimension was reversed. Two major results were found: (1) an interaction between the dimension reversed and the type of compound stimulus: in compound training with colour reversal, separable compound stimuli were discriminated worse than integral compounds and vice versa in compound training with line orientation reversed. (2) Performance in the second compound training was worse than in the first one. The first result points to a similar mode of processing for separable and integral compounds, whereas the second result shows that the whole stimulus is psychologically superior to its constituting features. Experiment 2 repeated experiment 1 using line orientation stimuli of reversed line and background brightness. Nevertheless, the results were similar to experiment 1. Results are discussed in the framework of a configural exemplar theory of discrimination that assumes the representation of the whole stimulus situation combined with transfer based on a measure of overall similarity.  
  Address C. and O. Vogt Institute of Brain Research, Heinrich Heine University Dusseldorf, Universitatsstr. 1, 40225, Dusseldorf, Germany. wernerc@uni-duesseldorf.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15490291 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2503  
Permanent link to this record
 

 
Author Regolin, L.; Marconato, F.; Vallortigara, G. doi  openurl
  Title Hemispheric differences in the recognition of partly occluded objects by newly hatched domestic chicks (Gallus gallus) Type Journal Article
  Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 7 Issue 3 Pages 162-170  
  Keywords Animals; Discrimination Learning/physiology; Dominance, Cerebral/*physiology; Female; Form Perception/*physiology; Imprinting (Psychology)/*physiology; Pattern Recognition, Visual/*physiology; Photic Stimulation; Random Allocation; Vision, Monocular/*physiology  
  Abstract Domestic chicks are capable of perceiving as a whole objects partly concealed by occluders (“amodal completion”). In previous studies chicks were imprinted on a certain configuration and at test they were required to choose between two alternative versions of it. Using the same paradigm we now investigated the presence of hemispheric differences in amodal completion by testing newborn chicks with one eye temporarily patched. Separate groups of newly hatched chicks were imprinted binocularly: (1) on a square partly occluded by a superimposed bar, (2) on a whole or (3) on an amputated version of the square. At test, in monocular conditions, each chick was presented with a free choice between a complete and an amputated square. In the crucial condition 1, chicks tested with only their left eye in use chose the complete square (like binocular chicks would do); right-eyed chicks, in contrast, tended to choose the amputated square. Similar results were obtained in another group of chicks imprinted binocularly onto a cross (either occluded or amputated in its central part) and required to choose between a complete or an amputated cross. Left-eyed and binocular chicks chose the complete cross, whereas right-eyed chicks did not choose the amputated cross significantly more often. These findings suggest that neural structures fed by the left eye (mainly located in the right hemisphere) are, in the chick, more inclined to a “global” analysis of visual scenes, whereas those fed by the right eye seem to be more inclined to a “featural” analysis of visual scenes.  
  Address Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy. lucia.regolin@unipd.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15241654 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2519  
Permanent link to this record
 

 
Author Izumi, A.; Kojima, S. doi  openurl
  Title Matching vocalizations to vocalizing faces in a chimpanzee (Pan troglodytes) Type Journal Article
  Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 7 Issue 3 Pages 179-184  
  Keywords Acoustic Stimulation; *Animal Communication; Animals; *Discrimination Learning; *Facial Expression; Female; Individuality; Pan troglodytes/*psychology; Photic Stimulation; *Recognition (Psychology); *Vocalization, Animal  
  Abstract Auditory-visual processing of species-specific vocalizations was investigated in a female chimpanzee named Pan. The basic task was auditory-visual matching-to-sample, where Pan was required to choose the vocalizer from two test movies in response to a chimpanzee's vocalization. In experiment 1, movies of vocalizing and silent faces were paired as the test movies. The results revealed that Pan recognized the status of other chimpanzees whether they vocalized or not. In experiment 2, two different types of vocalizing faces of an identical individual were prepared as the test movies. Pan recognized the correspondence between vocalization types and faces. These results suggested that chimpanzees possess crossmodal representations of their vocalizations, as do humans. Together with the ability of vocal individual recognition, this ability might reflect chimpanzees' profound understanding of the status of other individuals.  
  Address Primate Research Institute, Kyoto University, Kanrin, Inuyama, 484-8506, Aichi, Japan. izumi@pri.kyoto-u.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15015035 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2541  
Permanent link to this record
 

 
Author Parr, L.A. doi  openurl
  Title Perceptual biases for multimodal cues in chimpanzee (Pan troglodytes) affect recognition Type Journal Article
  Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 7 Issue 3 Pages 171-178  
  Keywords Acoustic Stimulation; *Animal Communication; Animals; Auditory Perception/physiology; Cues; Discrimination Learning/*physiology; Facial Expression; Female; Male; Pan troglodytes/*psychology; Perceptual Masking/*physiology; Photic Stimulation; Recognition (Psychology)/*physiology; Visual Perception/physiology; *Vocalization, Animal  
  Abstract The ability of organisms to discriminate social signals, such as affective displays, using different sensory modalities is important for social communication. However, a major problem for understanding the evolution and integration of multimodal signals is determining how humans and animals attend to different sensory modalities, and these different modalities contribute to the perception and categorization of social signals. Using a matching-to-sample procedure, chimpanzees discriminated videos of conspecifics' facial expressions that contained only auditory or only visual cues by selecting one of two facial expression photographs that matched the expression category represented by the sample. Other videos were edited to contain incongruent sensory cues, i.e., visual features of one expression but auditory features of another. In these cases, subjects were free to select the expression that matched either the auditory or visual modality, whichever was more salient for that expression type. Results showed that chimpanzees were able to discriminate facial expressions using only auditory or visual cues, and when these modalities were mixed. However, in these latter trials, depending on the expression category, clear preferences for either the visual or auditory modality emerged. Pant-hoots and play faces were discriminated preferentially using the auditory modality, while screams were discriminated preferentially using the visual modality. Therefore, depending on the type of expressive display, the auditory and visual modalities were differentially salient in ways that appear consistent with the ethological importance of that display's social function.  
  Address Division of Psychobiology, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, GA 30329, Atlanta, USA. parr@rmy.emory.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14997361 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2544  
Permanent link to this record
 

 
Author Carroll, J.; Murphy, C.J.; Neitz, M.; Hoeve, J.N.; Neitz, J. doi  openurl
  Title Photopigment basis for dichromatic color vision in the horse Type Journal Article
  Year 2001 Publication Journal of Vision Abbreviated Journal J Vis  
  Volume 1 Issue 2 Pages 80-87  
  Keywords Adaptation, Physiological; Animals; Color Perception/*physiology; Cones (Retina)/chemistry/*physiology; Electroretinography; Horses/*physiology; Photic Stimulation; Phototransduction/physiology; Retinal Pigments/analysis/*physiology; Visual Perception/physiology  
  Abstract Horses, like other ungulates, are active in the day, at dusk, dawn, and night; and, they have eyes designed to have both high sensitivity for vision in dim light and good visual acuity under higher light levels (Walls, 1942). Typically, daytime activity is associated with the presence of multiple cone classes and color-vision capacity (Jacobs, 1993). Previous studies in other ungulates, such as pigs, goats, cows, sheep and deer, have shown that they have two spectrally different cone types, and hence, at least the photopigment basis for dichromatic color vision (Neitz & Jacobs, 1989; Jacobs, Deegan II, Neitz, Murphy, Miller, & Marchinton, 1994; Jacobs, Deegan II, & Neitz, 1998). Here, electroretinogram flicker photometry was used to measure the spectral sensitivities of the cones in the domestic horse (Equus caballus). Two distinct spectral mechanisms were identified and are consistent with the presence of a short-wavelength-sensitive (S) and a middle-to-long-wavelength-sensitive (M/L) cone. The spectral sensitivity of the S cone was estimated to have a peak of 428 nm, while the M/L cone had a peak of 539 nm. These two cone types would provide the basis for dichromatic color vision consistent with recent results from behavioral testing of horses (Macuda & Timney, 1999; Macuda & Timney, 2000; Timney & Macuda, 2001). The spectral peak of the M/L cone photopigment measured here, in vivo, is similar to that obtained when the gene was sequenced, cloned, and expressed in vitro (Yokoyama & Radlwimmer, 1999). Of the ungulates that have been studied to date, all have the photopigment basis for dichromatic color vision; however, they differ considerably from one another in the spectral tuning of their cone pigments. These differences may represent adaptations to the different visual requirements of different species.  
  Address Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1534-7362 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12678603 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4060  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print