|   | 
Details
   web
Records
Author Czerlinski, G.H.; Erickson, J.O.; Theorell, H.
Title Chemical relaxation studies on the horse liver alcohol dehydrogenase system Type Journal Article
Year 1979 Publication Physiological Chemistry and Physics Abbreviated Journal Physiol Chem Phys
Volume 11 Issue (up) 6 Pages 537-569
Keywords Alcohol Oxidoreductases/*metabolism; Animals; Buffers; Electron Transport; Ethanol/metabolism; Horses; Hydrogen-Ion Concentration; Liver/*enzymology; Mathematics; NAD/metabolism; Oscillometry; Osmolar Concentration; Temperature; Time Factors
Abstract Chemical relaxation studies on the system horse liver alcohol dehydrogenase, nicotinamide adenine dinucleotide, and ethanol were conducted observing fluorescence changes between 400 and 500 nm. Temperature-jump experiments were performed at pH 6.5, 7.0, 8.0, and 9.0; concentration-jump experiments at pH 9.0. The reciprocal of the slowest relaxation time was found to be linearly dependent upon the enzyme concentration for relatively low enzyme concentrations, as predicted earlier. Use of the wide pH-range necessitated expression of the four apparent dissociation constants of the catalytic reaction cycle in terms of pH-independent constants. The system was described in terms of only one (or two) catalysis-linked protons not associated with the electron transfer. Protonic steps in a buffered system are in rapid equilibrium, too fast to be measured with the equipment available. Assuming only two of the four bimolecular reaction steps in the four-step cycle are fast compared to the remaining two, six cases may be considered with six expressions for the reciprocal of the slowest relaxation time. Comparison with the experimental data revealed that the bimolecular reaction steps governing the slowest relaxation time change with pH. Above the effective time resolution of the temperature-lump instrument with fluorescence detection (0.1 msec) only one other relaxation time was detectable and only at pH 9. This relaxation time, found to be independent of the concentration of all reactants within experimental error (r = 10 +/- 5 msec), is most likely due to an interconversion among ternary complexes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9325 ISBN Medium
Area Expedition Conference
Notes PMID:44918 Approved no
Call Number Equine Behaviour @ team @ Serial 3813
Permanent link to this record
 

 
Author Trim, C.M.; Moore, J.N.; Clark, E.S.
Title Renal effects of dopamine infusion in conscious horses Type Journal Article
Year 1989 Publication Equine veterinary journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue (up) 7 Pages 124-128
Keywords Animals; Blood Pressure/drug effects/physiology; Consciousness/*physiology; Creatinine/blood; Dopamine/administration & dosage/*pharmacology; Dose-Response Relationship, Drug; Female; Heart Rate/drug effects/physiology; Horses/*physiology; Infusions, Intravenous/veterinary; Kidney/blood supply/*drug effects/physiology; Osmolar Concentration; Potassium/blood; Random Allocation; Regional Blood Flow/drug effects/physiology; Renal Artery/drug effects/physiology/ultrasonography; Sodium/blood; Time Factors; Ultrasonography/methods/veterinary; Urination/physiology
Abstract An ultrasonic flow probe was implanted around a branch of the left renal artery in five horses. The effects of dopamine were studied in the unsedated horses 10 days after surgery. Three experiments, separated by at least two days, were performed in random order on each horse. In two experiments, dopamine was infused intravenously for 60 mins at either 2.5 and 5.0 micrograms/kg bodyweight (bwt)/min. Saline was infused for 60 mins before and after each infusion, and for 180 mins in the third experiment as a control. Renal blood flow increased during administration of dopamine at both dose rates (P = 0.0001). Urine volume increased (P = 0.055), and osmolality decreased (P < 0.05), with infusion of dopamine at 5.0 micrograms/kg bwt/min. Arterial blood pressure and heart rate were not significantly affected. Fractional excretions of sodium and potassium were not significantly changed with dopamine infusion. The higher dopamine dose rate was accompanied by dysrhythmias in some horses.
Address Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens 30602, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:9118094 Approved no
Call Number refbase @ user @ Serial 99
Permanent link to this record