|   | 
Details
   web
Records
Author Holmstrom, M.; Drevemo, S.
Title Effects of trot quality and collection on the angular velocity in the hindlimbs of riding horses Type Journal Article
Year 1997 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 23 Pages 62-65
Keywords Animals; Femur/physiology; Gait/*physiology; Hindlimb/*physiology; Horses/*physiology; Locomotion/*physiology; Male; Movement/physiology; Statistics; Time Factors
Abstract The angular velocities of the hindlimb angles of 14 horses, including 6 Grand Prix dressage horses, 4 horses judged as good at the trot and 4 horses judged as poor, were analysed. The horse material was the same as previously used by Holmstrom (1994) in studies on conformation and trotting gaits in the Swedish Warmblood riding horse. Four consecutive strides of each horse and the corresponding pace were analysed and mean velocity curves (Xh) for each angle were calculated. Before calculation the data were filtered forwards and backwards with a Butterworth third order filter with a cut off frequency of 60 Hz. During the last 60% of the stance phase there were differences between the horses judged as good and poor at the trot in all the analysed hindlimb angles except the femur inclination. The angular velocity in the hock joint, pelvis inclination and hindlimb pendulation was larger in the good horses. The angular velocity of the hindlimb pendulation decreased with collection in the Grand Prix horses. During parts of the stance phase, there was also a gradual decrease in the femur angular velocity from trot at hand to piaffe. In the hock joint, there was no difference in angular velocity between trot at hand and passage during the last 30%. The higher compression of the hock angle and pelvic angle to the horizontal plane probably reflects a higher compression of the whole hindlimb. It probably contributes to the greater springiness in the movements of good young horses and Grand Prix dressage horses. The results from the present study confirmed the importance of storing elastic strain energy for the quality of the dressage horse gaits.
Address Dept. of Anatomy and Histology, Swedish University of Agricultural Science, Uppsala
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes PMID:9354292 Approved no
Call Number Equine Behaviour @ team @ Serial 3736
Permanent link to this record
 

 
Author Burns, T.E.; Clayton, H.M.
Title Comparison of the temporal kinematics of the canter pirouette and collected canter Type Journal Article
Year 1997 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 23 Pages 58-61
Keywords Animals; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Movement/physiology; Time Factors; Videotape Recording; Walking/physiology
Abstract The objectives were to compare the temporal characteristics of canter pirouette strides with collected canter strides in elite dressage horses, and to determine whether the stride kinematics of the canter pirouettes fulfilled the requirements specified in the Federation Equestre Internationale Rules for Dressage Events. Eleven horses were videotaped (60 fields/s) during the individual medal competition at the 1992 Olympic Games. Temporal variables were extracted from the videotapes using standard methods. Two strides were analysed on each of the left and right leads and these were pooled to give mean values for the collected canter and the pirouettes. The pirouettes were completed in 4-9 strides, (mean of 6.4). In the collected canter strides, mean duration of the suspension was 0.013 s. There was no suspension in any of the pirouette strides, instead the stance phases of the leading forelimb and trailing hindlimb overlapped by a mean of 0.163 s. In 9 horses the trailing forelimb contacted the ground before the diagonal leading hindlimb in the collected canter, whereas in the pirouettes the leading hindlimb always made contact before the trailing forelimb (mean dissociation 0.164 s), giving the strides a distinct 4 beat rhythm. Due to increases in advanced placement between the diagonal limb pair and between the 2 forelimbs, the stride duration was longer in the pirouette (0.879 s) than the collected canter (0.629 s). It is concluded that the canter pirouette strides did not maintain the rhythm and timing of the the collected canter strides in any of the 11 horses.
Address Department of Veterinary Anatomy, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes PMID:9354291 Approved no
Call Number Equine Behaviour @ team @ Serial 3737
Permanent link to this record
 

 
Author Clayton, H.M.
Title Classification of collected trot, passage and piaffe based on temporal variables Type Journal Article
Year 1997 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 23 Pages 54-57
Keywords Analysis of Variance; Animals; Discriminant Analysis; Gait/*physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Male; Running/physiology; Time Factors; Videotape Recording; Walking/physiology
Abstract The objective was to determine whether collected trot, passage and piaffe could be distinguished as separate gaits on the basis of temporal variables. Sagittal plane, 60 Hz videotapes of 10 finalists in the dressage competitions at the 1992 Olympic Games were analysed to measure the temporal variables in absolute terms and as percentages of stride duration. Classification was based on analysis of variance, a graphical method and discriminant analysis. Stride duration was sufficient to distinguish collected trot from passage and piaffe in all horses. The analysis of variance showed that the mean values of most variables differed significantly between passage and piaffe. When hindlimb stance percentage was plotted against diagonal advanced placement percentage, some overlap was found between all 3 movements indicating that individual horses could not be classified reliably in this manner. Using hindlimb stance percentage and diagonal advanced placement percentage as input in a discriminant analysis, 80% of the cases were classified correctly, but at least one horse was misclassified in each movement. When the absolute, rather than percentage, values of the 2 variables were used as input in the discriminant analysis, 90% of the cases were correctly classified and the only misclassifications were between passage and piaffe. However, the 2 horses in which piaffe was misclassified as passage were the gold and silver medallists. In general, higher placed horses tended toward longer diagonal advanced placements, especially in collected trot and passage, and shorter hindlimb stance percentages in passage and piaffe.
Address Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes PMID:9354290 Approved no
Call Number Equine Behaviour @ team @ Serial 3738
Permanent link to this record
 

 
Author Santamaria, S.; Back, W.; van Weeren, P.R.; Knaap, J.; Barneveld, A.
Title Jumping characteristics of naive foals: lead changes and description of temporal and linear parameters Type Journal Article
Year 2002 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 34 Pages 302-307
Keywords Animals; Animals, Newborn/*physiology; Biomechanics; Female; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Male
Abstract The selection of foals as future showjumpers remains a subjective process based on qualitative parameters; and hence, frequently suffers from disparity in the criteria used by experts in the field. A detailed biomechanical description of foals while jumping would be most helpful in providing a better basis for the accurate assessment of their future athletic ability. The Qualisys Pro Reflex system was used to capture 3-dimensional kinematics of 41 Dutch Warmblood foals age 6 months free jumping a vertical fence, preceded by a cross pole fence. The left lead was the most preferred lead for both the fore- and hindlimbs, from the landing following the cross poles to the first move-off stride after clearing the vertical fence. The foals displayed a high incidence of rotary gallop during both the jump stride (divided into take-off, jump suspension and landing) and the first move-off stride, while change of lead was frequently observed during jump suspension. At the take-off side of the fence, the trailing forelimb in the last approach stride was placed furthest from the fence, whereas the trailing hindlimb at take-off was placed closest (P<0.05). At the landing side, the trailing forelimb was the closest and the leading hindlimb of the move-off stride 1 was the furthest (P<0.05). The trailing forelimb in the approach stride 1 had a significantly longer stance phase duration than the leading forelimb. At landing, the leading forelimb stance phase lasted longer than that of the trailing forelimb (P<0.05). The hindlimbs did not differ in their stance phase duration at take-off. The height reached by the hooves above the fence top was significantly greater in the hind limbs (P<0.05). In addition, the hindlimbs (97.1 +/- 2.6%) shortened more than the forelimbs (92.6 +/- 5.7%) (P<0.05). It is concluded that the overall jumping technique of foals is similar to that reported in literature for mature horses. If the patterns are consistent throughout the rearing period, the quantitative analysis of the kinematics of free jumping foals may provide a valid quantitative basis for early selection.
Address Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes PMID:12405705 Approved no
Call Number Equine Behaviour @ team @ Serial 3784
Permanent link to this record
 

 
Author Meershoek, L.S.; Schamhardt, H.C.; Roepstorff, L.; Johnston, C.
Title Forelimb tendon loading during jump landings and the influence of fence height Type Journal Article
Year 2001 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 33 Pages 6-10
Keywords Animals; Biomechanics; Forelimb/injuries/physiology; Horses/injuries/*physiology; Lameness, Animal/etiology; Ligaments, Articular/*physiology; Locomotion/*physiology; Physical Conditioning, Animal; Tendon Injuries/complications/physiopathology/veterinary; Tendons/*physiology; Weight-Bearing/physiology
Abstract Lameness in athletic horses is often caused by forelimb tendon injuries, especially in the interosseus tendon (TI) and superficial digital flexor tendon (SDF), but also in the accessory ligament (AL) of the deep digital flexor tendon (DDF). In an attempt to explain the aetiology of these injuries, the present study investigated the loading of the tendons during landing after a jump. In jumping horses, the highest forces can be expected in the trailing limb during landing. Therefore, landing kinematics and ground reaction forces of the trailing forelimb were measured from 6 horses jumping single fences with low to medium heights of 0.80, 1.00 and 1.20 m. The tendon forces were calculated using inverse dynamics and an in vitro model of the lower forelimb. Calculated peak forces in the TI, SDF and DDF + AL during landing were 15.8, 13.9 and 11.7 kN respectively. The relative loading of the tendons (landing forces compared with failure forces determined in a separate study) increased from DDF to TI to SDF and was very high in SDF. This explains the low injury incidence of the DDF and the high injury incidence of the SDF. Fence height substantially influenced SDF forces, whereas it hardly influenced TI forces and did not influence AL strain. Reduction of fence height might therefore limit the risks for SDF injuries, but not for TI and AL injuries.
Address Department of Veterinary Anatomy and Physiology, Institute for Fundamental and Clinical Human Movement Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes PMID:11721571 Approved no
Call Number Equine Behaviour @ team @ Serial 3786
Permanent link to this record
 

 
Author Barrey, E.; Galloux, P.
Title Analysis of the equine jumping technique by accelerometry Type Journal Article
Year 1997 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 23 Pages 45-49
Keywords *Acceleration; Analysis of Variance; Animals; Forelimb/physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Movement/physiology; Time Factors
Abstract The purpose of this study was to demonstrate the relationships between jumping technique and dorsoventral acceleration measured at the sternum. Eight saddle horses of various jumping abilities competed on a selective experimental show jumping course including 14 obstacles. An accelerometric belt fastened onto the thorax continuously measured the dorsoventral acceleration during the course. At each jump, 11 locomotor parameters (acceleration peaks, durations and stride frequency) were obtained from the dorsoventral acceleration-time curves. The type of obstacle significantly influenced the hindlimb acceleration peak at take-off and the landing acceleration peak (P<0.01). The poor jumpers exhibited a higher mean forelimb acceleration peak at take-off, a higher forelimb/hindlimb ratio between peaks of acceleration (F/H), and a lower approach stride frequency than good jumpers. Knocking over an obstacle was significantly associated with a low hindlimb acceleration peak at take-off and a high F/H ratio (P<0.01). In order to observe the continuous changes in the frequency domain of the dorsoventral acceleration during the approach and take-off phase, a Morlet's wavelet analysis was computed for each horse jumping over a series of 3 vertical obstacles. Different patterns of time-frequency images obtained by wavelet analysis were found when the horse either knocked over a vertical obstacle or cleared it. In the latter case, the image pattern showed an instantaneous increase in stride frequency at the end of the approach phase, and a marked energy content in the middle frequency range at take-off.
Address INRA Station de Genetique Quantitative et Appliquee, Groupe cheval, Jouy-en-Josas, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes PMID:9354288 Approved no
Call Number Equine Behaviour @ team @ Serial 3796
Permanent link to this record
 

 
Author Galloux, P.; Barrey, E.
Title Components of the total kinetic moment in jumping horses Type Journal Article
Year 1997 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 23 Pages 41-44
Keywords Algorithms; Animals; Exertion/*physiology; Female; Gravitation; Horses/*physiology; Kinetics; Locomotion/*physiology; Male; Models, Biological; Movement/*physiology; Video Recording
Abstract Thirty horses were filmed with a panning camera operating at 50 frames/s as they jumped over a 1.20 x 1.20 m fence. The markers of 9 joints on the horse and 7 joints on the rider were tracked in 2D with the TrackEye system. The centre of gravity and moment of inertia of each segment were calculated using a geometric algorithm and a cylindric model, respectively. The kinetic moment of each part of the horse was calculated after filtering, and resampling of data. This method showed the relative contribution of each body segment to the body overall rotation during the take-off, jump and landing phases. It was found that the trunk, hindlimbs and head-neck had the greatest influence. The coordination between the motion of the body segments allowed the horse to control its angular speed of rotation over the fence. This remained nearly constant during the airborne phase (120 +/- 5 degrees/s). During the airborne phase, the kinetic moment was constant because its value was equal to the moment of the external forces (722 +/- 125 kg x m2/s).
Address Ecole Nationale d'Equitation, Terrefort, Saumur, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes PMID:9354287 Approved no
Call Number Equine Behaviour @ team @ Serial 3797
Permanent link to this record
 

 
Author Buchner, H.H.F.; Obermuller, S.; Scheidl, M.
Title Body Centre of Mass Movement in the Sound Horse Type Journal Article
Year 2000 Publication The Veterinary Journal Abbreviated Journal
Volume 160 Issue 3 Pages 225-234
Keywords Horse; centre of mass; kinematics; segment model; locomotion.
Abstract The body centre of mass (BCM) is a key factor in the analysis of equine locomotion, as its position and movement determines the distribution and magnitude of loads on the limbs. In this study, the three-dimensional (3D) movement of the BCM in walking and trotting horses was assessed using a kinematic, segmental method. Thirty markers representing 20 body segments were recorded in 12 sound horses while standing, walking and trotting on a treadmill using a high-speed video system. Based on segmental inertial data, 3D positions of the segmental centres of mass as well as the total BCM were calculated. The position within the trunk during square standing and the movements of the BCM were determined for the three planes. The position of the BCM in the standing horse is presented relative to external reference points. At the trot, vertical displacement amplitude of the BCM amounted to 53 (6) mm as mean (sd), which was 27% smaller than external trunk movement. Medio-lateral displacement amplitude of the BCM was 19 (4) mm, 34% less than trunk amplitude. Sagittal forward-backward oscillations of the BCM independent from general forward movement were 13 (3) mm, being 24% less than trunk movements. At the walk, vertical, medio-lateral and sagittal BCM movements were smaller than trunk movements by 43, 65 and 65% respectively. The results show reduced and efficient BCM movements compared to the trunk and form a basis for the assessment of various clinical conditions such as lameness, the influence of a rider and various dressage performances.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 3959
Permanent link to this record
 

 
Author Hodson, E.F.; Clayton, H.M.; Lanovaz, J.L.
Title Temporal analysis of walk movements in the Grand Prix dressage test at the 1996 Olympic Games Type Journal Article
Year 1999 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.
Volume 62 Issue 2-3 Pages 89-97
Keywords Dressage; Horse; Kinematics; Locomotion; Gait
Abstract Video analysis was used to measure temporal characteristics of the collected walk, extended walk and half pirouette at walk of eleven competitors during the team dressage competition at the 1996 Summer Olympic Games in Atlanta, GA. Forelimb stance durations, hind limb stance durations, lateral step intervals and diagonal step intervals were symmetrical for the right and left sides in the collected and extended walk strides, but there were left-right asymmetries in the forelimb stance duration and in the lateral step interval in the half pirouette strides. For both collected and extended walk strides, hind limb stance duration was significantly longer than forelimb stance duration. The mean values for the group of eleven horses showed that the collected and extended walks had a regular rhythm. The half pirouette strides showed an irregularity in which there was a short interval between footfalls of the outside forelimb and inside hind limb, and along interval between footfalls of the inside hind limb and inside forelimb. This irregularity reflected an early placement of the inside hind limb. The stance times of both hind limbs were prolonged and this finding, in combination with the early placement of the inside hind limb, led to an increase in the period of tripedal support in each stride of the half pirouette. This was interpreted as a means of maintaining the horses' balance in the absence of forward movement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 3960
Permanent link to this record
 

 
Author Denoix, J.M.
Title Approche mecanique des allures et du saut chez le cheval Type Journal Article
Year 1991 Publication Science & Sports Abbreviated Journal
Volume 6 Issue 2 Pages 117-124
Keywords cheval; locomotion; biomecanique; horse; locomotion; biomechanics
Abstract Resume La locomotion du cheval implique des contraintes mecaniques elevees sur les os, les articulations, les muscles et les tendons. Son etude permet de mieux connaitre les interventions actives ou passives de ces organes au cours des allures et du saut. Ces elements sont utiles pour la mise en oeuvre rationnelle d'exercices d'entrainement chez le cheval de sport ou de courses, en fonction des exigences de la discipline et des eventuels problemes locomoteurs du sujet. L'etude mecanique de la locomotion du cheval est par ailleurs indispensable pour l'amelioration de la connaissance des boiteries. Elle permet de preciser la genese des lesions osteoarticulaires et musculo-tendineuses et contribue a ameliorer leur traitement.Summary Locomotion of the horse is correlated with a great variety of mechanical stresses on bones, joints, muscles and tendons. Research on locomotion increases the knowledge of passive and active interventions of these structures during gaits and jump. These data are useful to manage the training of sport and jump horses, especially to fit with the particularities of the sport speciality and individual locomotor problems of horses. Beside, studies of locomotion in the horse are of importance to improve the knowledge of lamenesses. They contribute to precise the pathogenesis of osteoarticular and musculotendinous injuries and improve their treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 3976
Permanent link to this record