|   | 
Details
   web
Records
Author Thomas, K.E.; Annest, J.L.; Gilchrist, J.; Bixby-Hammett, D.M.
Title Non-fatal horse related injuries treated in emergency departments in the United States, 2001-2003 Type
Year 2006 Publication British Journal of Sports Medicine Abbreviated Journal Br J Sports Med
Volume 40 Issue 7 Pages 619-626
Keywords Accident Prevention/methods; Accidental Falls/prevention & control; Adolescent; Adult; Aged; Animals; Athletic Injuries/*epidemiology/prevention & control; Child; Child, Preschool; Emergency Service, Hospital/*statistics & numerical data; Female; Head Protective Devices/utilization; Health Promotion; *Horses; Humans; Infant; Male; Middle Aged; Patient Education; Sex Distribution; United States/epidemiology
Abstract OBJECTIVE: To characterise and provide nationally representative estimates of persons with non-fatal horse related injuries treated in American emergency departments. METHODS: The National Electronic Injury Surveillance System All Injury Program (NEISS-AIP) is a stratified probability sample comprising 66 hospitals. Data on injuries treated in these emergency departments are collected and reported. NEISS-AIP data on all types (horseback riding and otherwise) of non-fatal horse related injuries from 2001 to 2003 were analysed. RESULTS: An estimated 102,904 persons with non-fatal horse related injuries (35.7 per 100,000 population) were treated in American emergency departments each year from 2001 to 2003 inclusive. Non-fatal injury rates were higher for females (41.5 per 100,000) than for males (29.8 per 100,000). Most patients were injured while mounted on a horse (66.1%), commonly from falling or being thrown by the horse; while not mounted, injuries most often resulted from being kicked by the horse. The body parts most often injured were the head/neck region (23.2%), lower extremity (22.2%), and upper extremity (21.5%). The most common principal diagnoses were contusions/abrasions (31.4%) and fractures (25.2%). For each year that was studied, an estimated 11 502 people sustained traumatic brain injuries from horse related incidents. Overall, more than 11% of those injured were admitted to hospital. CONCLUSIONS: Horse related injuries are a public health concern not just for riders but for anyone in close contact with horses. Prevention programmes should target horseback riders and horse caregivers to promote helmet use and educate participants about horse behaviour, proper handling of horses, and safe riding practices.
Address Office of Statistics and Programming, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA. KEThomas@cdc.gov
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1473-0480 ISBN Medium
Area Expedition Conference
Notes PMID:16611723 Approved no
Call Number (up) Serial 1866
Permanent link to this record
 

 
Author Bobbert, M.F.; Santamaria, S.
Title Contribution of the forelimbs and hindlimbs of the horse to mechanical energy changes in jumping Type Journal Article
Year 2005 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 208 Issue 2 Pages 249-260
Keywords Animals; Biomechanics; Forelimb/*physiology; Hindlimb/*physiology; Horses/*physiology; Locomotion/*physiology; Muscle, Skeletal/*physiology; Time Factors
Abstract The purpose of the present study was to gain more insight into the contribution of the forelimbs and hindlimbs of the horse to energy changes during the push-off for a jump. For this purpose, we collected kinematic data at 240 Hz from 23 5-year-old Warmbloods (average mass: 595 kg) performing free jumps over a 1.15 m high fence. From these data, we calculated the changes in mechanical energy and the changes in limb length and joint angles. The force carried by the forelimbs and the amount of energy stored was estimated from the distance between elbow and hoof, assuming that this part of the leg behaved as a linear spring. During the forelimb push, the total energy first decreased by 3.2 J kg(-1) and then increased again by 4.2 J kg(-1) to the end of the forelimb push. At the end of the forelimb push, the kinetic energy due to horizontal velocity of the centre of mass was 1.6 J kg(-1) less than at the start, while the effective energy (energy contributing to jump height) was 2.3 J kg(-1) greater. It was investigated to what extent these changes could involve passive spring-like behaviour of the forelimbs. The amount of energy stored and re-utilized in the distal tendons during the forelimb push was estimated to be on average 0.4 J kg(-1) in the trailing forelimb and 0.23 J kg(-1) in the leading forelimb. This means that a considerable amount of energy was first dissipated and subsequently regenerated by muscles, with triceps brachii probably being the most important contributor. During the hindlimb push, the muscles of the leg were primarily producing energy. The total increase in energy was 2.5 J kg(-1) and the peak power output amounted to 71 W kg(-1).
Address Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, van der Boechorstraat 9, NL-1081 BT Amsterdam, The Netherlands. MFBobbert@fbw.vu.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:15634844 Approved no
Call Number (up) Serial 1895
Permanent link to this record
 

 
Author Powers, P.; Harrison, A.
Title Effects of the rider on the linear kinematics of jumping horses Type Journal Article
Year 2002 Publication Sports Biomechanics / International Society of Biomechanics in Sports Abbreviated Journal Sports Biomech
Volume 1 Issue 2 Pages 135-146
Keywords Animals; Behavior, Animal/*physiology; Biomechanics; Communication; Exertion/*physiology; Gait/*physiology; Horses/*physiology; Humans; Locomotion/*physiology; Posture/*physiology; Task Performance and Analysis; Video Recording; Weight-Bearing/*physiology
Abstract This study examined the effects of the rider on the linear projectile kinematics of show-jumping horses. SVHS video recordings (50 Hz) of eight horses jumping a vertical fence 1 m high were used for the study. Horses jumped the fence under two conditions: loose (no rider or tack) and ridden. Recordings were digitised using Peak Motus. After digitising the sequences, each rider's digitised data were removed from the ridden horse data so that three conditions were examined: loose, ridden (including the rider's data) and riderless (rider's data removed). Repeated measures ANOVA revealed significant differences between ridden and loose conditions for CG height at take-off (p < 0.001), CG distance to the fence at take-off (p = 0.001), maximum CG during the suspension phase (p < 0.001), CG position over the centre of the fence (p < 0.001), CG height at landing (p < 0.001), and vertical velocity at take-off (p < 0.001). The results indicated that the rider's effect on jumping horses was primarily due to behavioural changes in the horses motion (resulting from the rider's instruction), rather than inertial effects (due to the positioning of the rider on the horse). These findings have implications for the coaching of riders and horses.
Address Department of PE and Sports Sciences, University of Limerick, Limerick, Ireland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-3141 ISBN Medium
Area Expedition Conference
Notes PMID:14658371 Approved no
Call Number (up) Serial 1904
Permanent link to this record
 

 
Author Krause Hoare; Hemelrijk; Rubenstein
Title Leadership in fish shoals Type Journal Article
Year 2000 Publication Fish and Fisheries Abbreviated Journal Fish Fish
Volume 1 Issue Pages 82-89
Keywords directional locomotion; fish schools; front fish; nutritional state; schooling; shoal leadership; swimming direction
Abstract Leadership is not an inherent quality of animal groups that show directional locomotion. However, there are other factors that may be responsible for the occurrence of leadership in fish shoals, such as individual differences in nutritional state between group members. It appears that front fish have a strong influence on directional shoal movements and that individuals that occupy such positions are often characterised by larger body lengths and lower nutritional state. Potential interactions between the two factors and their importance for positioning within shoals need further attention. Initiation of directional movement in stationary shoals and position preferences in mobile shoals need to be addressed separately because they are potentially subject to different constraints. Individuals that initiate a swimming direction may not necessarily be capable of the sustained high swimming performance required to keep the front position or have the motivation to do so, for that matter. More empirical and theoretical work is necessary to look at the factors controlling positioning behaviour within shoals, as well as overall shoal shape and structure. Tracking of marked individuals whose positioning behaviour is monitored over extended time periods of hours or days would be useful. There is an indication that shoal positions are rotated by individuals according to their nutritional needs, with hungry fish occupying front positions only for as long as necessary to regain their nutritional balance. This suggests that shoal members effectively take turns at being leaders. There is a need for three-dimensional recordings of shoaling behaviour using high-speed video systems that allow a detailed analysis of information transfer in shoals of different size. The relationship between leadership and shoal size might provide an interesting field for future research. Most studies to date have been restricted to shoals of small and medium size and more information on larger shoals would be useful.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Serial 2067
Permanent link to this record
 

 
Author Wilson, A.M.; McGuigan, M.P.; Su, A.; van Den Bogert, A.J.
Title Horses damp the spring in their step Type Journal Article
Year 2001 Publication Nature Abbreviated Journal Nature
Volume 414 Issue 6866 Pages 895-899
Keywords Animals; Biomechanics; Elasticity; Forelimb; Gait; Horses/anatomy & histology/*physiology; Leg Bones/*physiology; Locomotion; Models, Biological; Muscle Fibers/physiology; Muscle, Skeletal/anatomy & histology/*physiology; Tendons/anatomy & histology/*physiology; Vibration
Abstract The muscular work of galloping in horses is halved by storing and returning elastic strain energy in spring-like muscle-tendon units.These make the legs act like a child's pogo stick that is tuned to stretch and recoil at 2.5 strides per second. This mechanism is optimized by unique musculoskeletal adaptations: the digital flexor muscles have extremely short fibres and significant passive properties, whereas the tendons are very long and span several joints. Length change occurs by a stretching of the spring-like digital flexor tendons rather than through energetically expensive length changes in the muscle. Despite being apparently redundant for such a mechanism, the muscle fibres in the digital flexors are well developed. Here we show that the mechanical arrangement of the elastic leg permits it to vibrate at a higher frequency of 30-40 Hz that could cause fatigue damage to tendon and bone. Furthermore, we show that the digital flexor muscles have minimal ability to contribute to or regulate significantly the 2.5-Hz cycle of movement, but are ideally arranged to damp these high-frequency oscillations in the limb.
Address Department of Veterinary Basic Sciences, The Royal Veterinary College, Hatfield, Herts AL9 7TA, UK. awilson@rvc.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:11780059 Approved no
Call Number (up) Equine Behaviour @ team @ Serial 2300
Permanent link to this record
 

 
Author Moehlman, P.D.
Title Behavioral patterns and communication in feral asses (Equus africanus) Type Journal Article
Year 1998 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.
Volume 60 Issue 2-3 Pages 125-169
Keywords Equids; Feral asses; Behavior patterns; Facial expressions; Postures; Locomotion
Abstract The behavior of feral populations of the African wild ass (Equus africanus) were studied in the Northern Panamint Range of Death Valley National Monument for 20 months from 1970 to 1973 [Moehlman, P.D., 1974. Behavior and ecology of feral asses (Equus asinus). PhD dissertation, University of Wisconsin, Madison, 251 pp.; Moehlman, P.D., 1979. Behavior and ecology of feral asses (Equus asinus). Natl. Geogr. Soc. Res. Reports, 1970: 405-411]. Maintenance behavior is described and behavior sequences that were used in social interactions are quantified by sex and age class. Agonistic, sexual, and greeting behavior patterns are described and analyzed in conjunction with the responses they elicited. Mutual grooming mainly occurred between adult males, and between females and their offspring. Five types of vocalizations were distinguished: brays, grunts, growls, snorts, and whuffles. A second population was studied for 1 month on Ossabaw Island, GA (Moehlman, 1979). This population had more permanent social groups and had a higher rate of mutual grooming and foal social play.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Equine Behaviour @ team @ Serial 2381
Permanent link to this record
 

 
Author Fiset, S.; Landry, F.; Ouellette, M.
Title Egocentric search for disappearing objects in domestic dogs: evidence for a geometric hypothesis of direction Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 1 Pages 1-12
Keywords Animals; Dogs/*psychology; Female; Form Perception; Male; Mental Recall; *Motion Perception; Orientation; Problem Solving; *Space Perception
Abstract In several species, the ability to locate a disappearing object is an adaptive component of predatory and social behaviour. In domestic dogs, spatial memory for hidden objects is primarily based on an egocentric frame of reference. We investigated the geometric components of egocentric spatial information used by domestic dogs to locate an object they saw move and disappear. In experiment 1, the distance and the direction between the position of the animal and the hiding location were put in conflict. Results showed that the dogs primarily used the directional information between their own spatial coordinates and the target position. In experiment 2, the accuracy of the dogs in finding a hidden object by using directional information was estimated by manipulating the angular deviation between adjacent hiding locations and the position of the animal. Four angular deviations were tested: 5, 7.5, 10 and 15 degrees . Results showed that the performance of the dogs decreased as a function of the angular deviations but it clearly remained well above chance, revealing that the representation of the dogs for direction is precise. In the discussion, we examine how and why domestic dogs determine the direction in which they saw an object disappear.
Address Secteur Sciences Humaines, Universite de Moncton, Campus d'Edmundston, Edmundston, New-Brunswick, Canada E3V 2S8. sfiset@umce.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15750805 Approved no
Call Number (up) Equine Behaviour @ team @ Serial 2489
Permanent link to this record
 

 
Author Iversen, I.H.; Matsuzawa, T.
Title Development of interception of moving targets by chimpanzees (Pan troglodytes) in an automated task Type Journal Article
Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 6 Issue 3 Pages 169-183
Keywords Animals; Female; Hand/physiology; Motion Perception/*physiology; Movement/physiology; Pan troglodytes/*physiology; Spatial Behavior/*physiology; *Task Performance and Analysis; User-Computer Interface; Visual Perception/physiology
Abstract The experiments investigated how two adult captive chimpanzees learned to navigate in an automated interception task. They had to capture a visual target that moved predictably on a touch monitor. The aim of the study was to determine the learning stages that led to an efficient strategy of intercepting the target. The chimpanzees had prior training in moving a finger on a touch monitor and were exposed to the interception task without any explicit training. With a finger the subject could move a small “ball” at any speed on the screen toward a visual target that moved at a fixed speed either back and forth in a linear path or around the edge of the screen in a rectangular pattern. Initial ball and target locations varied from trial to trial. The subjects received a small fruit reinforcement when they hit the target with the ball. The speed of target movement was increased across training stages up to 38 cm/s. Learning progressed from merely chasing the target to intercepting the target by moving the ball to a point on the screen that coincided with arrival of the target at that point. Performance improvement consisted of reduction in redundancy of the movement path and reduction in the time to target interception. Analysis of the finger's movement path showed that the subjects anticipated the target's movement even before it began to move. Thus, the subjects learned to use the target's initial resting location at trial onset as a predictive signal for where the target would later be when it began moving. During probe trials, where the target unpredictably remained stationary throughout the trial, the subjects first moved the ball in anticipation of expected target movement and then corrected the movement to steer the ball to the resting target. Anticipatory ball movement in probe trials with novel ball and target locations (tested for one subject) showed generalized interception beyond the trained ball and target locations. The experiments illustrate in a laboratory setting the development of a highly complex and adaptive motor performance that resembles navigational skills seen in natural settings where predators intercept the path of moving prey.
Address Department of Psychology, University of North Florida, Jacksonville, FL 32224, USA. iiversen@unf.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:12761656 Approved no
Call Number (up) Equine Behaviour @ team @ Serial 2567
Permanent link to this record
 

 
Author Goto, K.; Lea, S.E.G.; Dittrich, W.H.
Title Discrimination of intentional and random motion paths by pigeons Type Journal Article
Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 5 Issue 3 Pages 119-127
Keywords Animals; *Columbidae; *Discrimination Learning; *Motion Perception; Recognition (Psychology)
Abstract Twelve pigeons ( Columba livia) were trained on a go/no-go schedule to discriminate between two kinds of movement patterns of dots, which to human observers appear to be “intentional” and “non-intentional” movements. In experiment 1, the intentional motion stimulus contained one dot (a “wolf”) that moved systematically towards another dot as though stalking it, and three distractors (“sheep”). The non-intentional motion stimulus consisted of four distractors but no stalker. Birds showed some improvement of discrimination as the sessions progressed, but high levels of discrimination were not reached. In experiment 2, the same birds were tested with different stimuli. The same parameters were used but the number of intentionally moving dots in the intentional motion stimulus was altered, so that three wolves stalked one sheep. Despite the enhanced difference of movement patterns, the birds did not show any further improvement in discrimination. However, birds for which the non-intentional stimulus was associated with reward showed a decline in discrimination. These results indicated that pigeons can discriminate between stimuli that do and do not contain an element that human observer see as moving intentionally. However, as no feature-positive effect was found in experiment 1, it is assumed that pigeons did not perceive or discriminate these stimuli on the basis that the intentional stimuli contained a feature that the non-intentional stimuli lacked, though the convergence seen in experiment 2 may have been an effective feature for the pigeons. Pigeons seem to be able to recognise some form of multiple simultaneously goal-directed motions, compared to random motions, as a distinctive feature, but do not seem to use simple “intentional” motion paths of two geometrical figures, embedded in random motions, as a feature whose presence or absence differentiates motion displays.
Address School of Psychology, University of Exeter, Washington Singer Laboratories, Exeter EX4 4QG, UK. K.Goto@exeter.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:12357284 Approved no
Call Number (up) Equine Behaviour @ team @ Serial 2601
Permanent link to this record
 

 
Author Etienne, A.S.; Maurer, R.; Seguinot, V.
Title Path integration in mammals and its interaction with visual landmarks Type Journal Article
Year 1996 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 199 Issue Pt 1 Pages 201-209
Keywords Animals; Cognition/physiology; Cricetinae; Gerbillinae; Humans; Locomotion/*physiology; Mammals/*physiology; Mesocricetus; Mice; Proprioception/physiology; Rats; Visual Pathways/*physiology; Visual Perception/*physiology
Abstract During locomotion, mammals update their position with respect to a fixed point of reference, such as their point of departure, by processing inertial cues, proprioceptive feedback and stored motor commands generated during locomotion. This so-called path integration system (dead reckoning) allows the animal to return to its home, or to a familiar feeding place, even when external cues are absent or novel. However, without the use of external cues, the path integration process leads to rapid accumulation of errors involving both the direction and distance of the goal. Therefore, even nocturnal species such as hamsters and mice rely more on previously learned visual references than on the path integration system when the two types of information are in conflict. Recent studies investigate the extent to which path integration and familiar visual cues cooperate to optimize the navigational performance.
Address Laboratoire d'Ethologie, FPSE, Universite de Geneve, Carouge, Switzerland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:8576691 Approved no
Call Number (up) Equine Behaviour @ team @ Serial 2758
Permanent link to this record