toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Suzuki, Y.; Toquenaga, Y. doi  openurl
  Title Effects of information and group structure on evolution of altruism: analysis of two-score model by covariance and contextual analyses Type Journal Article
  Year 2005 Publication Journal of theoretical biology Abbreviated Journal (up) J. Theor. Biol.  
  Volume 232 Issue 2 Pages 191-201  
  Keywords *Altruism; Analysis of Variance; *Communication; Cooperative Behavior; *Evolution; Game Theory; *Group Structure; Humans; Models, Genetic; Models, Psychological; Selection (Genetics); Trust  
  Abstract An altruistic individual has to gamble on cooperation to a stranger because it does not know whether the stranger is trustworthy before direct interaction. Nowak and Sigmund (Nature 393 (1998a) 573; J. Theor. Biol. 194 (1998b) 561) presented a new theoretical framework of indirect reciprocal altruism by image scoring game where all individuals are informed about a partner's behavior from its image score without direct interaction. Interestingly, in a simplified version of the image scoring game, the evolutionarily stability condition for altruism became a similar form of Hamilton's rule, i.e. inequality that the probability of getting correct information is more than the ratio of cost to benefit. Since the Hamilton's rule was derived by evolutionarily stable analysis, the evolutionary meaning of the probability of getting correct information has not been clearly examined in terms of kin and group selection. In this study, we applied covariance analysis to the two-score model for deriving the Hamilton's rule. We confirmed that the probability of getting correct information was proportional to the bias of altruistic interactions caused by using information about a partner's image score. The Hamilton's rule was dependent on the number of game bouts even though the information reduced the risk of cooperation to selfish one at the first encounter. In addition, we incorporated group structure to the two-score model to examine whether the probability of getting correct information affect selection for altruism by group selection. We calculated a Hamilton's rule of group selection by contextual analysis. Group selection is very effective when either the probability of getting correct information or that of future interaction, or both are low. The two Hamilton's rules derived by covariance and contextual analyses demonstrated the effects of information and group structure on the evolution of altruism. We inferred that information about a partner's behavior and group structure can produce flexible pathways for the evolution of altruism.  
  Address Integrative Environmental Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Ten-Nou-Dai, Tsukuba, Ibaraki 305-8572, Japan. yukari@pe.ies.life.tsukuba.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15530489 Approved no  
  Call Number refbase @ user @ Serial 556  
Permanent link to this record
 

 
Author Adolphs, R. url  doi
openurl 
  Title Cognitive neuroscience of human social behaviour Type Journal Article
  Year 2003 Publication Nature Reviews. Neuroscience Abbreviated Journal (up) Nat Rev Neurosci  
  Volume 4 Issue 3 Pages 165-178  
  Keywords Cognition; Emotions; Humans; Models, Psychological; *Social Behavior  
  Abstract We are an intensely social species--it has been argued that our social nature defines what makes us human, what makes us conscious or what gave us our large brains. As a new field, the social brain sciences are probing the neural underpinnings of social behaviour and have produced a banquet of data that are both tantalizing and deeply puzzling. We are finding new links between emotion and reason, between action and perception, and between representations of other people and ourselves. No less important are the links that are also being established across disciplines to understand social behaviour, as neuroscientists, social psychologists, anthropologists, ethologists and philosophers forge new collaborations.  
  Address Deparment of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242, USA. ralph-adolphs@uiowa.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-003X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12612630 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4706  
Permanent link to this record
 

 
Author Hemelrijk, C.K.; Wantia, J. doi  openurl
  Title Individual variation by self-organisation Type Journal Article
  Year 2005 Publication Neuroscience and biobehavioral reviews Abbreviated Journal (up) Neurosci Biobehav Rev  
  Volume 29 Issue 1 Pages 125-136  
  Keywords Aggression; Animals; Behavior, Animal/*physiology; Competitive Behavior/*physiology; Female; Humans; *Individuality; Male; Models, Psychological; Sex Characteristics; *Social Dominance; Time Factors  
  Abstract In this paper, we show that differences in dominance and spatial centrality of individuals in a group may arise through self-organisation. Our instrument is a model, called DomWorld, that represents two traits that are often found in animals, namely grouping and competing. In this model individual differences grow under the following conditions: (1) when the intensity of aggression increases and grouping becomes denser, (2) when the degree of sexual dimorphism in fighting power increases. In this case the differences among females compared to males grow too, (3) when, upon encountering another individual, the tendency to attack is 'obligate' and not conditional, namely 'sensitive to risks'. Results resemble phenomena described for societies of primates, mice, birds and pigs.  
  Address Theoretical Biology, University of Groningen, NN Haren, The Netherlands. hemelrij@ifi.unizh.ch  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0149-7634 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15652260 Approved no  
  Call Number refbase @ user @ Serial 443  
Permanent link to this record
 

 
Author Pickens, C.L.; Holland, P.C. doi  openurl
  Title Conditioning and cognition Type Journal Article
  Year 2004 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal (up) Neurosci Biobehav Rev  
  Volume 28 Issue 7 Pages 651-661  
  Keywords Animals; Association Learning/physiology; Cognition/*physiology; Conditioning (Psychology)/*physiology; Discrimination Learning/physiology; Humans; Memory; Models, Psychological; Reinforcement (Psychology); Visual Perception/physiology  
  Abstract Animals' abilities to use internal representations of absent objects to guide adaptive behavior and acquire new information, and to represent multiple spatial, temporal, and object properties of complex events and event sequences, may underlie many aspects of human perception, memory, and symbolic thought. In this review, two classes of simple associative learning tasks that address these core cognitive capacities are discussed. The first set, including reinforcer revaluation and mediated learning procedures, address the power of Pavlovian conditioned stimuli to gain access, through learning, to representations of upcoming events. The second set of investigations concern the construction of complex stimulus representations, as illustrated in studies of contextual learning, the conjunction of explicit stimulus elements in configural learning procedures, and recent studies of episodic-like memory. The importance of identifying both cognitive process and brain system bases of performance in animal models is emphasized.  
  Address Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0149-7634 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15555675 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2803  
Permanent link to this record
 

 
Author Epstein, R. openurl 
  Title Animal cognition as the praxist views it Type Journal Article
  Year 1985 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal (up) Neurosci Biobehav Rev  
  Volume 9 Issue 4 Pages 623-630  
  Keywords Animals; *Behavior, Animal; Behavioral Sciences/*trends; Behaviorism; *Cognition; Columbidae; History, 18th Century; History, 19th Century; Humans; Models, Psychological; Problem Solving; Psychological Theory; Psychology/history/trends  
  Abstract The distinction between psychology and praxics provides a clear answer to the question of animal cognition. As Griffin and others have noted, the kinds of behavioral phenomena that lead psychologists to speak of cognition in humans are also observed in nonhuman animals, and therefore those who are convinced of the legitimacy of psychology should not hesitate to speak of and to attempt to study animal cognition. The behavior of organisms is also a legitimate subject matter, and praxics, the study of behavior, has led to significant advances in our understanding of the kinds of behaviors that lead psychologists to speak of cognition. Praxics is a biological science; the attempt by students of behavior to appropriate psychology has been misguided. Generativity theory is an example of a formal theory of behavior that has proved useful both in the engineering of intelligent performances in nonhuman animals and in the prediction of intelligent performances in humans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0149-7634 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:3909017 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2809  
Permanent link to this record
 

 
Author Whiten, A. openurl 
  Title Social complexity and social intelligence Type Conference Article
  Year 2000 Publication Novartis Foundation Symposium Abbreviated Journal (up) Novartis Found Symp  
  Volume 233 Issue Pages 185-96; discussion 196-201  
  Keywords Animals; Brain/anatomy & histology/*physiology; Humans; *Intelligence/physiology; Learning; Models, Psychological; Primates; *Social Behavior; Social Problems  
  Abstract When we talk of the 'nature of intelligence', or any other attribute, we may be referring to its essential structure, or to its place in nature, particularly the function it has evolved to serve. Here I examine both, from the perspective of the evolution of intelligence in primates. Over the last 20 years, the Social (or 'Machiavellian') Intelligence Hypothesis has gained empirical support. Its core claim is that the intelligence of primates is primarily an adaptation to the special complexities of primate social life. In addition to this hypothesis about the function of intellect, a secondary claim is that the very structure of intelligence has been moulded to be 'social' in character, an idea that presents a challenge to orthodox views of intelligence as a general-purpose capacity. I shall outline the principal components of social intelligence and the environment of social complexity it engages with. This raises the question of whether domain specificity is an appropriate characterization of social intelligence and its subcomponents, like theory of mind. As a counter-argument to such specificity I consider the hypothesis that great apes exhibit a cluster of advanced cognitive abilities that rest on a shared capacity for second-order mental representation.  
  Address School of Psychology, University of St Andrews, St Andrews, Fife KY16 9JU, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-2511 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11276903 Approved no  
  Call Number Serial 2084  
Permanent link to this record
 

 
Author Fischer, J.; Cheney, D.L.; Seyfarth, R.M. doi  openurl
  Title Development of infant baboons' responses to graded bark variants Type Journal Article
  Year 2000 Publication Proceedings. Biological sciences / The Royal Society Abbreviated Journal (up) Proc Biol Sci  
  Volume 267 Issue 1459 Pages 2317-2321  
  Keywords *Animal Communication; Animals; Behavior, Animal; Female; Male; Models, Psychological; Papio/growth & development/*physiology; *Vocalization, Animal  
  Abstract We studied the development of infant baboons' (Papio cynocephalus ursinus) responses to conspecific 'barks' in a free-ranging population in the Okavango Delta, Botswana. These barks grade from tonal, harmonically rich calls into calls with a more noisy, harsh structure. Typically, tonal variants are given when the signaller is at risk of losing contact with the group or a particular individual ('contact barks'), whereas harsh variants are given in response to predators ('alarm barks'). We conducted focal observations and playback experiments in which we presented variants of barks recorded from resident adult females. By six months of age, infants reliably discriminated between typical alarm and contact barks and they responded more strongly to intermediate alarm calls than to typical contact barks. Infants of six months and older also recognized their mothers by voice. The ability to discriminate between different call variants developed with increasing age. At two and a half months of age, infants failed to respond at all, whereas at four months they responded irrespective of the call type that was presented. At six months, infants showed adult-like responses by responding strongly to alarm barks but ignoring contact barks. We concluded that infants gradually learn to attach the appropriate meaning to alarm and contact barks.  
  Address Department of Psychology, University of Pennsylvania, 3815 Walnut Street, Philadelphia, PA 19104, USA. fischerj@eva.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11413649 Approved no  
  Call Number refbase @ user @ Serial 694  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print