toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nicol, C.J.; Adachi, M.; Akiyama, T.E.; Gonzalez, F.J. doi  openurl
  Title PPARgamma in endothelial cells influences high fat diet-induced hypertension Type Journal Article
  Year 2005 Publication American journal of hypertension : journal of the American Society of Hypertension Abbreviated Journal Am J Hypertens  
  Volume 18 Issue 4 Pt 1 Pages 549-556  
  Keywords Administration, Oral; Animals; Antihypertensive Agents/pharmacology; Blood Pressure/drug effects; Diabetes Mellitus, Type 2/physiopathology; Dietary Fats/*administration & dosage/pharmacology; Dose-Response Relationship, Drug; Endothelial Cells/*metabolism; Female; Heart Rate/drug effects; Hypertension/*etiology; Ligands; Male; Mice; Mice, Knockout; PPAR gamma/*metabolism; Sodium Chloride/administration & dosage/pharmacology; Thiazolidinediones/pharmacology  
  Abstract BACKGROUND: Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands improve human hypertension. However, the mechanism and site of this effect remains unknown, confounded by PPARgamma expression in many cell types, including endothelial cells (ECs). METHODS: To evaluate the vascular role of PPARgamma we used a conditional null mouse model. Specific disruption of PPARgamma in ECs was created by crossing Tie2-Cre+ transgenic (T2T+) and PPARgamma-floxed (fl/fl) mice to generate PPARgamma (fl/fl)T2T+ (PPARgamma E-null) mice. Conscious 8- to 12-week-old congenic PPARgamma (fl/fl)Cre- (wild type) and PPARgamma E-null mice were examined for changes in systolic blood pressure (BP) and heart rate (HR), untreated, after 2 months of salt-loading (drinking water), and after treatment for 3 months with high fat (HF) diet alone or supplemented during the last 2 weeks with rosiglitazone (3 mg/kg/d). RESULTS: Untreated PPARgamma E-nulls were phenotypically indistinguishable from wild-type littermates. However, compared to similarly treated wild types, HF-treated PPARgamma E-nulls had significantly elevated systolic BP not seen after normal diet or salt-loading. Despite sex-dependent baseline differences, salt-loaded and HF-treated PPARgamma E-nulls of either sex had significantly elevated HR versus wild types. Interestingly, rosiglitazone improved serum insulin levels, but not HF diet-induced hypertension, in PPARgamma E-null mice. CONCLUSIONS: These results suggest that PPARgamma in ECs not only is an important regulator of hypertension and HR under stressed conditions mimicking those arising in type 2 diabetics, but also mediates the antihypertensive effects of rosiglitazone. These data add evidence supporting a beneficial role for PPARgamma-specific ligands in the treatment of hypertension, and suggest therapeutic strategies targeting ECs may prove useful.  
  Address Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0895-7061 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15831367 Approved no  
  Call Number refbase @ user @ Serial 69  
Permanent link to this record
 

 
Author Guo, G.L.; Moffit, J.S.; Nicol, C.J.; Ward, J.M.; Aleksunes, L.A.; Slitt, A.L.; Kliewer, S.A.; Manautou, J.E.; Gonzalez, F.J. doi  openurl
  Title Enhanced acetaminophen toxicity by activation of the pregnane X receptor Type Journal Article
  Year 2004 Publication Toxicological sciences : an official journal of the Society of Toxicology Abbreviated Journal Toxicol Sci  
  Volume 82 Issue 2 Pages 374-380  
  Keywords Acetaminophen/pharmacokinetics/*toxicity; Analgesics, Non-Narcotic/pharmacokinetics/*toxicity; Animals; Aryl Hydrocarbon Hydroxylases/biosynthesis; Biotransformation; Blotting, Northern; Chromatography, High Pressure Liquid; Cytochrome P-450 CYP3A; Membrane Proteins; Mice; Mice, Knockout; Oxidoreductases, N-Demethylating/biosynthesis; Pregnenolone Carbonitrile/pharmacology; Receptors, Cytoplasmic and Nuclear/*drug effects; Receptors, Steroid/*drug effects; Sulfhydryl Compounds/metabolism  
  Abstract The pregnane X receptor (PXR) is a ligand-activated transcription factor and member of the nuclear receptor superfamily. Activation of PXR represents an important mechanism for the induction of cytochrome P450 3A (CYP3A) enzymes that can convert acetaminophen (APAP) to its toxic intermediate metabolite, N-acetyl-p-benzoquinone imine (NAPQI). Therefore, it was hypothesized that activation of PXR plays a major role in APAP-induced hepatotoxicity. Pretreatment with the PXR activator, pregnenolone 16alpha-carbonitrile (PCN), markedly enhanced APAP-induced hepatic injury, as revealed by increased serum ALT levels and hepatic centrilobular necrosis, in wild-type but not in PXR-null mice. Further analysis showed that following PCN treatment, PXR-null mice had lower CYP3A11 expression, decreased NAPQI formation, and increased maintenance of hepatic glutathione content compared to wild-type mice. Thus, these results suggest that PXR plays a critical role in APAP-induced hepatic toxicity, probably by inducing CYP3A11 expression and hence increasing bioactivation.  
  Address Laboratory of Metabolism, CCR, NCI, NIH, Bethesda, Maryland 20892, USA  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1096-6080 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15456926 Approved no  
  Call Number refbase @ user @ Serial 71  
Permanent link to this record
 

 
Author Harman, F.S.; Nicol, C.J.; Marin, H.E.; Ward, J.M.; Gonzalez, F.J.; Peters, J.M. doi  openurl
  Title Peroxisome proliferator-activated receptor-delta attenuates colon carcinogenesis Type Journal Article
  Year 2004 Publication Nature medicine Abbreviated Journal Nat Med  
  Volume 10 Issue 5 Pages 481-483  
  Keywords Animals; Azoxymethane/toxicity; Colonic Neoplasms/etiology/genetics/*prevention & control; Colonic Polyps/etiology/genetics/pathology/prevention & control; Disease Models, Animal; Mice; Mice, Knockout; Mice, Mutant Strains; Phenotype; Receptors, Cytoplasmic and Nuclear/deficiency/genetics/*physiology; Transcription Factors/deficiency/genetics/*physiology  
  Abstract Peroxisome proliferator-activated receptor-delta (PPAR-delta; also known as PPAR-beta) is expressed at high levels in colon tumors, but its contribution to colon cancer is unclear. We examined the role of PPAR-delta in colon carcinogenesis using PPAR-delta-deficient (Ppard(-/-)) mice. In both the Min mutant and chemically induced mouse models, colon polyp formation was significantly greater in mice nullizygous for PPAR-delta. In contrast to previous reports suggesting that activation of PPAR-delta potentiates colon polyp formation, here we show that PPAR-delta attenuates colon carcinogenesis.  
  Address Department of Veterinary Science and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. jmp21@psu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1078-8956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15048110 Approved no  
  Call Number refbase @ user @ Serial 77  
Permanent link to this record
 

 
Author Gavrilova, O.; Haluzik, M.; Matsusue, K.; Cutson, J.J.; Johnson, L.; Dietz, K.R.; Nicol, C.J.; Vinson, C.; Gonzalez, F.J.; Reitman, M.L. doi  openurl
  Title Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass Type Journal Article
  Year 2003 Publication The Journal of biological chemistry Abbreviated Journal J Biol Chem  
  Volume 278 Issue 36 Pages 34268-34276  
  Keywords Adipose Tissue/*metabolism; Animals; Blotting, Southern; Blotting, Western; Female; Hypoglycemia/genetics; Insulin Resistance/genetics; Lipid Metabolism; Liver/*metabolism; Liver Diseases/genetics/*metabolism; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; RNA/metabolism; Receptors, Cytoplasmic and Nuclear/*genetics/*physiology; Recombination, Genetic; Thiazoles/pharmacology; *Thiazolidinediones; Time Factors; Transcription Factors/*genetics/*physiology; Triglycerides/*metabolism  
  Abstract Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor that mediates the antidiabetic effects of thiazolidinediones. PPAR gamma is present in adipose tissue and becomes elevated in fatty livers, but the roles of specific tissues in thiazolidinedione actions are unclear. We studied the function of liver PPAR gamma in both lipoatrophic A-ZIP/F-1 (AZIP) and wild type mice. In AZIP mice, ablation of liver PPAR gamma reduced the hepatic steatosis but worsened the hyperlipidemia, triglyceride clearance, and muscle insulin resistance. Inactivation of AZIP liver PPAR gamma also abolished the hypoglycemic and hypolipidemic effects of rosiglitazone, demonstrating that, in the absence of adipose tissue, the liver is a primary and major site of thiazolidinedione action. In contrast, rosiglitazone remained effective in non-lipoatrophic mice lacking liver PPAR gamma, suggesting that adipose tissue is the major site of thiazolidinedione action in typical mice with adipose tissue. Interestingly, mice without liver PPAR gamma, but with adipose tissue, developed relative fat intolerance, increased adiposity, hyperlipidemia, and insulin resistance. Thus, liver PPAR gamma regulates triglyceride homeostasis, contributing to hepatic steatosis, but protecting other tissues from triglyceride accumulation and insulin resistance.  
  Address Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. oksanag@bdg10.niddk.nih.gov  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9258 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12805374 Approved no  
  Call Number refbase @ user @ Serial 81  
Permanent link to this record
 

 
Author Crosby, M.B.; Zhang, J.; Nowling, T.M.; Svenson, J.L.; Nicol, C.J.; Gonzalez, F.J.; Gilkeson, G.S. doi  openurl
  Title Inflammatory modulation of PPAR gamma expression and activity Type Journal Article
  Year 2006 Publication Clinical immunology Abbreviated Journal Clin Immunol  
  Volume 118 Issue 2-3 Pages 276-283  
  Keywords Age Factors; Animals; Cell Line, Transformed; Cells, Cultured; Female; Inflammation Mediators/*physiology; Kidney/metabolism; Mesangial Cells/metabolism; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred MRL lpr; Mice, Knockout; Nitric Oxide/biosynthesis; Nitric Oxide Synthase Type II/biosynthesis/genetics; PPAR gamma/*biosynthesis/*genetics/metabolism; Up-Regulation/immunology  
  Abstract Nitric oxide (NO) production increases with age in the lupus-prone MRL/lpr mouse, paralleling disease activity. One mechanism for excess NO production in MRL/lpr mice may be a defect in down-regulatory mechanisms of the iNOS pathway. A potential modulator of NO is the nuclear hormone receptor peroxisome proliferation activated receptor gamma (PPARgamma). We demonstrate that renal PPARgamma protein expression was altered as disease progressed in MRL/lpr mice, which paralleled increased iNOS protein expression. Additionally, MRL/lpr-derived primary mesangial cells expressed less PPARgamma than BALB/c mesangial cells and produced more NO in response to LPS and IFNgamma. Furthermore, PPARgamma activity was reduced in mesangial cells following exposure to inflammatory mediators. This activity was restored with the addition of a NOS enzyme inhibitor. These results indicate that the activation of inflammatory pathways may lead to reduced activity and expression of PPARgamma, further exacerbating the disease state.  
  Address Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1521-6616 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16303334 Approved no  
  Call Number refbase @ user @ Serial 67  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print