|   | 
Details
   web
Records
Author Hampton, R.R.; Shettleworth, S.J.
Title Hippocampus and memory in a food-storing and in a nonstoring bird species Type Journal Article
Year 1996 Publication Behavioral neuroscience Abbreviated Journal Behav Neurosci
Volume 110 Issue 5 Pages (down) 946-964
Keywords Animals; Appetitive Behavior/*physiology; Attention/physiology; Birds/*physiology; Brain Mapping; Feeding Behavior/*physiology; Mental Recall/*physiology; Organ Size/physiology; Orientation/*physiology; Retention (Psychology)/physiology; Species Specificity
Abstract Food-storing birds maintain in memory a large and constantly changing catalog of the locations of stored food. The hippocampus of food-storing black-capped chickadees (Parus atricapillus) is proportionally larger than that of nonstoring dark-eyed juncos (Junco hyemalis). Chickadees perform better than do juncos in an operant test of spatial non-matching-to-sample (SNMTS), and chickadees are more resistant to interference in this paradigm. Hippocampal lesions attenuate performance in SNMTS and increase interference. In tests of continuous spatial alternation (CSA), juncos perform better than chickadees. CSA performance also declines following hippocampal lesions. By itself, sensitivity of a given task to hippocampal damage does not predict the direction of memory differences between storing and nonstoring species.
Address Department of Psychology, University of Toronto, Ontario, Canada. robert@ln.nimh.nih.gov
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7044 ISBN Medium
Area Expedition Conference
Notes PMID:8918998 Approved no
Call Number refbase @ user @ Serial 375
Permanent link to this record
 

 
Author Hampton, R.R.; Shettleworth, S.J.
Title Hippocampal lesions impair memory for location but not color in passerine birds Type Journal Article
Year 1996 Publication Behavioral neuroscience Abbreviated Journal Behav Neurosci
Volume 110 Issue 4 Pages (down) 831-835
Keywords Animals; Appetitive Behavior/physiology; Birds/*physiology; Brain Mapping; Color Perception/*physiology; Discrimination Learning/physiology; Hippocampus/*physiology; Long-Term Potentiation/physiology; Mental Recall/*physiology; Orientation/*physiology; Species Specificity
Abstract The effects of hippocampal complex lesions on memory for location and color were assessed in black-capped chickadees (Parus atricapillus) and dark-eyed juncos (Junco hyemalis) in operant tests of matching to sample. Before surgery, most birds were more accurate on tests of memory for location than on tests of memory for color. Damage to the hippocampal complex caused a decline in memory for location, whereas memory for color was not affected in the same birds. This dissociation indicates that the avian hippocampus plays an important role in spatial cognition and suggests that this brain structure may play no role in working memory generally.
Address Department of Psychology, University of Toronto, Ontario, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7044 ISBN Medium
Area Expedition Conference
Notes PMID:8864273 Approved no
Call Number refbase @ user @ Serial 376
Permanent link to this record
 

 
Author Brodbeck, D.R.
Title Picture fragment completion: priming in the pigeon Type Journal Article
Year 1997 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 23 Issue 4 Pages (down) 461-468
Keywords Animals; *Attention; *Awareness; Columbidae; *Mental Recall; *Pattern Recognition, Visual; *Perceptual Masking; Problem Solving
Abstract It has been suggested that the system behind implicit memory in humans is evolutionarily old and that animals should readily show priming. In Experiment 1, a picture fragment completion test was used to test priming in pigeons. After pecking a warning stimulus, pigeons were shown 2 partially obscured pictures from different categories and were always reinforced for choosing a picture from one of the categories. On control trials, the warning stimulus was a picture of some object (not from the S+ or S- category), on study trials the warning stimulus was a picture to be categorized on the next trial, and on test trials the warning stimulus was a randomly chosen picture and the S+ picture was the warning stimulus seen on the previous trial. Categorization was better on study and test trials than on control trials. Experiment 2 ruled out the possibility that the priming effect was caused by the pigeons' responding to familiarity by using warning stimuli from both S+ and S- categories. Experiment 3 investigated the time course of the priming effect.
Address Department of Psychology, University of Western Ontario, London, Ontario, Canada. brodbeck@thunderbird.auc.laurentian.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:9411019 Approved no
Call Number Equine Behaviour @ team @ Serial 2777
Permanent link to this record
 

 
Author Rilling, M.E.; Neiworth, J.J.
Title How animals use images Type Journal Article
Year 1991 Publication Science Progress Abbreviated Journal Sci Prog
Volume 75 Issue 298 Pt 3-4 Pages (down) 439-452
Keywords Animals; Association Learning; Columbidae; *Concept Formation; *Imagination; *Mental Recall; Motion Perception; Problem Solving; *Thinking; *Visual Perception
Abstract Animal cognition is a field within experimental psychology in which cognitive processes formerly studied exclusively with people have been demonstrated in animals. Evidence for imagery in the pigeon emerges from the experiments described here. The pigeon's task was to discriminate, by pecking the appropriate choice key, between a clock hand presented on a video screen that rotated clockwise with constant velocity from a clock hand that violated constant velocity. Imagery was defined by trials on which the line rotated from 12.00 o'clock to 3.00 o'clock, then disappeared during a delay, and reappeared at a final stop location beyond 3.00 o'clock. After acquisition of a discrimination with final stop locations at 3.00 o'clock and 6.00 o'clock, the evidence for imagery was the accurate responding of the pigeons to novel locations at 4.00 o'clock and 7.00 o'clock. Pigeons display evidence of imagery by transforming a representation of movement that includes a series of intermediate steps which accurately represent the location of a moving stimulus after it disappears.
Address Department of Psychology, Michigan State University, East Lansing 48824
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8504 ISBN Medium
Area Expedition Conference
Notes PMID:1842858 Approved no
Call Number Equine Behaviour @ team @ Serial 2831
Permanent link to this record
 

 
Author Kaiser, D.H.; Zentall, T.R.; Neiman, E.
Title Timing in pigeons: effects of the similarity between intertrial interval and gap in a timing signal Type Journal Article
Year 2002 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 28 Issue 4 Pages (down) 416-422
Keywords Animals; *Attention; Columbidae; *Conditioning, Operant; Discrimination Learning; Mental Recall; Probability Learning; *Reinforcement (Psychology); *Reinforcement Schedule; Retention (Psychology); Time Factors; *Time Perception/physiology
Abstract Previous research suggests that when a fixed interval is interrupted (known as the gap procedure), pigeons tend to reset memory and start timing from 0 after the gap. However, because the ambient conditions of the gap typically have been the same as during the intertrial interval (ITI), ambiguity may have resulted. In the present experiment, the authors found that when ambient conditions during the gap were similar to the ITI, pigeons tended to reset memory, but when ambient conditions during the gap were different from the ITI, pigeons tended to stop timing, retain the duration of the stimulus in memory, and add to that time when the stimulus reappeared. Thus, when the gap was unambiguous, pigeons timed accurately.
Address Department of Psychology, East Carolina University, Greenville, North Carolina 27858, USA. kaiserd@mail.ecu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:12395499 Approved no
Call Number refbase @ user @ Serial 238
Permanent link to this record
 

 
Author Shettleworth, S.J.; Krebs, J.R.
Title How marsh tits find their hoards: the roles of site preference and spatial memory Type Journal Article
Year 1982 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 8 Issue 4 Pages (down) 354-375
Keywords Animals; *Appetitive Behavior; Birds; Cues; Discrimination Learning; *Memory; *Mental Recall; *Orientation; *Space Perception
Abstract Marsh tits (Parus palustris) store single food items in scattered locations and recover them hours or days later. Some properties of the spatial memory involved were analyzed in two laboratory experiments. In the first, marsh tits were offered 97 sites for storing 12 seeds. They recovered a median of 65% of them 2-3 hr later, making only two errors per seed while doing so. Over trials, they used some sites more often than others, but during recovery they were more likely to visit a site of any preference value if they had stored a seed there that day than if they had not. Recovery performance was much worse if the experimenters moved the seeds between storage and recovery. A fixed search strategy that had some of the same average properties as the tits' search behavior also did worse than the real birds. In Experiment 2, any tendency to visit the same sites on successive daily tests in the aviary was placed in opposition to memory for storage sites by allowing the tits to store more seeds 2 hr after storing a first batch. They tended to avoid individual storage sites holding seeds from the first batch. When the tits searched for all the seeds 2 hr later, they tended to recover more seeds from the second batch than from the first, i.e., there was a recency effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:7175447 Approved no
Call Number refbase @ user @ Serial 385
Permanent link to this record
 

 
Author Pepperberg, I.M.; Brezinsky, M.V.
Title Acquisition of a relative class concept by an African gray parrot (Psittacus erithacus): discriminations based on relative size Type Journal Article
Year 1991 Publication Journal of Comparative Psychology Abbreviated Journal J Comp Psychol
Volume 105 Issue 3 Pages (down) 286-294
Keywords Animals; Aptitude; *Concept Formation; *Discrimination Learning; Form Perception; Male; Mental Recall; *Parrots; *Size Perception; Vocalization, Animal
Abstract We report that an African gray parrot (Psittacus erithacus), Alex, responds to stimuli on a relative basis. Previous laboratory studies with artificial stimuli (such as pure tones) suggest that birds make relational responses as a secondary strategy, only after they have acquired information about the absolute values of the stimuli. Alex, however, after learning to respond to a small set of exemplars on the basis of relative size, transferred this behavior to novel situations that did not provide specific information about the absolute values of the stimuli. He responded to vocal questions about which was the larger or smaller exemplar by vocally labeling its color or material, and he responded “none” if the exemplars did not differ in size. His overall accuracy was 78.7%.
Address Northwestern University
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. : 1983 Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7036 ISBN Medium
Area Expedition Conference
Notes PMID:1935007 Approved yes
Call Number Equine Behaviour @ team @ Serial 3610
Permanent link to this record
 

 
Author Reid, P.J.; Shettleworth, S.J.
Title Detection of cryptic prey: search image or search rate? Type Journal Article
Year 1992 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 18 Issue 3 Pages (down) 273-286
Keywords Animals; Appetitive Behavior; *Attention; Color Perception; Columbidae; *Discrimination Learning; Food Preferences/psychology; *Imagination; *Mental Recall; *Predatory Behavior
Abstract Animals' improvement in capturing cryptic prey with experience has long been attributed to a perceptual mechanism, the specific search image. Detection could also be improved by adjusting rate of search. In a series of studies using both naturalistic and operant search tasks, pigeons searched for wheat, dyed to produce 1 conspicuous and 2 equally cryptic prey types. Contrary to the predictions of the search-rate hypothesis, pigeons given a choice between the 2 cryptic types took the type experienced most recently. However, experience with 1 cryptic type improved accuracy on the other cryptic type, a result inconsistent with a search image specific to 1 prey type. Search image may better be thought of as priming of attention to those features of the prey type that best distinguish the prey from the background.
Address University of Toronto, Ontario, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:1619395 Approved no
Call Number refbase @ user @ Serial 381
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title Foraging, memory, and constraints on learning Type Journal Article
Year 1985 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci
Volume 443 Issue Pages (down) 216-226
Keywords Animals; Animals, Wild; *Appetitive Behavior; *Avoidance Learning; Birds; *Conditioning, Classical; Discrimination Learning; Food Preferences; *Memory; *Mental Recall; Motivation; *Predatory Behavior; Rats; *Taste
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923 ISBN Medium
Area Expedition Conference
Notes PMID:3860072 Approved no
Call Number refbase @ user @ Serial 384
Permanent link to this record
 

 
Author Zentall, T.R.
Title Mental time travel in animals: a challenging question Type Journal Article
Year 2006 Publication Behavioural processes Abbreviated Journal Behav. Process.
Volume 72 Issue 2 Pages (down) 173-183
Keywords Animals; *Behavior, Animal; Columbidae; Concept Formation; Conditioning, Operant; *Imagination; *Memory; Mental Recall; Planning Techniques; Rats; *Time Perception; Transfer (Psychology)
Abstract Humans have the ability to mentally recreate past events (using episodic memory) and imagine future events (by planning). The best evidence for such mental time travel is personal and thus subjective. For this reason, it is particularly difficult to study such behavior in animals. There is some indirect evidence, however, that animals have both episodic memory and the ability to plan for the future. When unexpectedly asked to do so, animals can report about their recent past experiences (episodic memory) and they also appear to be able to use the anticipation of a future event as the basis for a present action (planning). Thus, the ability to imagine past and future events may not be uniquely human.
Address Department of Psychology, University of Kentucky, Lexington, KY 40506-0044, USA. zentall@uky.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-6357 ISBN Medium
Area Expedition Conference
Notes PMID:16466863 Approved no
Call Number refbase @ user @ Serial 218
Permanent link to this record