toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Griffin, D.R. doi  openurl
  Title (up) Animals know more than we used to think Type
  Year 2001 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.  
  Volume 98 Issue 9 Pages 4833-4834  
  Keywords Animal Communication; Animals; Attention/physiology; Brain/physiology; Choice Behavior/physiology; Cognition/*physiology; Humans; Macaca mulatta/physiology/*psychology; Memory/*physiology; Optic Disk/physiology; Psychological Tests  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11320232 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2823  
Permanent link to this record
 

 
Author Shettleworth, S.J.; Westwood, R.P. openurl 
  Title (up) Divided attention, memory, and spatial discrimination in food-storing and nonstoring birds, black-capped chickadees (Poecile atricapilla) and dark-eyed juncos (Junco hyemalis) Type Journal Article
  Year 2002 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 28 Issue 3 Pages 227-241  
  Keywords Animals; Attention/*physiology; Behavior, Animal/physiology; Birds; *Discrimination (Psychology); *Food Habits; Memory/*physiology; Space Perception/*physiology; Spatial Behavior/*physiology  
  Abstract Food-storing birds, black-capped chickadees (Poecile atricapilla), and nonstoring birds, dark-eyed juncos (Junco hyemalis), matched color or location on a touch screen. Both species showed a divided attention effect for color but not for location (Experiment 1). Chickadees performed better on location than on color with retention intervals up to 40 s, but juncos did not (Experiment 2). Increasing sample-distractor distance improved performance similarly in both species. Multidimensional scaling revealed that both use a Euclidean metric of spatial similarity (Experiment 3). When choosing between the location and color of a remembered item, food storers choose location more than do nonstorers. These results explain this effect by differences in memory for location relative to color, not division of attention or spatial discrimination ability.  
  Address Department of Psychology, University of Toronto, 100 Saint George Street, Toronto, Ontario M5S 3G3, Canada. shettle@psych.utoronto.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12136700 Approved no  
  Call Number refbase @ user @ Serial 370  
Permanent link to this record
 

 
Author Cheng, K.; Wignall, A.E. doi  openurl
  Title (up) Honeybees (Apis mellifera) holding on to memories: response competition causes retroactive interference effects Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 2 Pages 141-150  
  Keywords Animals; Bees/*physiology; Choice Behavior/physiology; *Cues; Memory/*physiology; Perceptual Masking/physiology; Space Perception/*physiology; Spatial Behavior/*physiology  
  Abstract Five experiments on honeybees examined how the learning of a second task interferes with what was previously learned. Free flying bees were tested for landmark-based memory in variations on a paradigm of retroactive interference. Bees first learned Task 1, were tested on Task 1 (Test 1), then learned Task 2, and were tested again on Task 1 (Test 2). A 60-min delay (waiting in a box) before Test 2 caused no performance decrements. If the two tasks had conflicting response requirements, (e.g., target right of a green landmark in Task 1 and left of a blue landmark in Task 2), then a strong decrement on Test 2 was found (retroactive interference effect). When response competition was minimised during training or testing, however, the decrement on Test 2 was small or nonexistent. The results implicate response competition as a major contributor to the retroactive interference effect. The honeybee seems to hold on to memories; new memories do not wipe out old ones.  
  Address Centre for the Integrative Study of Animal Behaviour and Department of Psychology, Macquarie University, Sydney, NSW 2109, Australia. ken@galliform.bhs.mq.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16374626 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2477  
Permanent link to this record
 

 
Author Zentall, T.R.; Kaiser, D.H. doi  openurl
  Title (up) Interval timing with gaps: gap ambiguity as an alternative to temporal decay Type Journal Article
  Year 2005 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 31 Issue 4 Pages 484-486  
  Keywords Animals; Behavior, Animal; Discrimination (Psychology)/*physiology; Memory/*physiology; Rats; Time Perception/*physiology  
  Abstract C. V. Buhusi, D. Perera, and W. H. Meck (2005) proposed a hypothesis of timing in rats to account for the results of experiments that have used the peak procedure with gaps. According to this hypothesis, the introduction of a gap causes the animal's memory for the pregap interval to passively decay (subjectively shorten) in direct proportion to the duration and salience of the gap. Thus, animals should pause with short, nonsalient gaps but should reset their clock with longer, salient gaps. The present authors suggest that the ambiguity of the gap (i.e., the similarity between the gap and the intertrial interval in both appearance and relative duration) causes the animal to actively reset the clock and prevents adequate assessments of the fate of timed intervals prior to the gap. Furthermore, when the intertrial interval is discriminable from the gap, the evidence suggests that timed intervals prior to the gap are not lost but are retained in memory.  
  Address Department of Psychology, University of Kentucky, Lexington, KY 40506, USA. zentall@uky.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16248734 Approved no  
  Call Number refbase @ user @ Serial 220  
Permanent link to this record
 

 
Author Mettke-Hofmann, C.; Gwinner, E. doi  openurl
  Title (up) Long-term memory for a life on the move Type Journal Article
  Year 2003 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.  
  Volume 100 Issue 10 Pages 5863-5866  
  Keywords Animals; Germany; Israel; Memory/*physiology; Models, Biological; Periodicity; Songbirds/*physiology  
  Abstract Evidence is accumulating that cognitive abilities are shaped by the specific ecological conditions to which animals are exposed. Long-distance migratory birds may provide a striking example of this. Field observations have shown that, at least in some species, a substantial proportion of individuals return to the same breeding, wintering, and stopover sites in successive years. This observation suggests that migrants have evolved special cognitive abilities that enable them to accomplish these feats. Here we show that memory of a particular feeding site persisted for at least 12 months in a long-distance migrant, whereas a closely related nonmigrant could remember such a site for only 2 weeks. Thus, it seems that the migratory lifestyle has influenced the learning and memorizing capacities of migratory birds. These results build a bridge between field observations suggesting special memorization feats of migratory birds and previous neuroanatomical results from the same two species indicating an increase in relative hippocampal size from the first to the second year of life in the migrant but not in the nonmigrant.  
  Address Max Planck Research Centre for Ornithology, Department of Biological Rhythms and Behaviour, Von-der-Tann-Strasse 7, 82346 Andechs, Germany. mettke-hofmann@erl.ornithol.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12719527 Approved no  
  Call Number refbase @ user @ Serial 511  
Permanent link to this record
 

 
Author Reichmuth Kastak, C.; Schusterman, R.J. doi  openurl
  Title (up) Long-term memory for concepts in a California sea lion ( Zalophus californianus) Type Journal Article
  Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 5 Issue 4 Pages 225-232  
  Keywords Animals; Concept Formation; Female; Memory/*physiology; Mental Processes; Sea Lions/physiology/*psychology; Time Factors  
  Abstract An adult California sea lion ( Zalophus californianus) with extensive experience in performing discrimination learning tasks was tested to evaluate her long-term memory for two previously learned concepts. An associative concept, that of equivalence classification, was retested after a retention interval of approximately 1 year. The sea lion had originally shown emergent equivalence classification with nonsimilarity-based classes of stimuli in a simple discrimination repeated-reversal procedure as well as in a matching-to-sample procedure. The 1-year memory test revealed no decrement in classification performance in either procedure. A relational concept, that of generalized identity matching, was retested after approximately 10 years. The sea lion had originally received trial-and-error exemplar training with identity matching-to-sample problems prior to transferring the concept to novel stimulus configurations. In the 10-year memory test, the sea lion immediately and reliably applied the previously established identity concept to familiar and novel sets of matching problems. These are the first reports of long-term conceptual memory in a nonprimate species. The experimental findings are consistent with a variety of observations of sea lions in natural settings, which indicate that natal sites, feeding areas, and individuals may be remembered over long periods of time.  
  Address Long Marine Laboratory, University of California at Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060, USA. coll@cats.ucsc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12461600 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2590  
Permanent link to this record
 

 
Author Shettleworth, S.J. doi  openurl
  Title (up) Memory and hippocampal specialization in food-storing birds: challenges for research on comparative cognition Type Journal Article
  Year 2003 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol  
  Volume 62 Issue 2 Pages 108-116  
  Keywords Animals; Birds/*physiology; Cognition/*physiology; Color Perception/physiology; Feeding Behavior/*physiology; Hippocampus/*physiology; Memory/*physiology; Species Specificity  
  Abstract The three-way association among food-storing behavior, spatial memory, and hippocampal enlargement in some species of birds is widely cited as an example of a new 'cognitive ecology' or 'neuroecology.' Whether this relationship is as strong as it first appears and whether it might be evidence for an adaptive specialization of memory and hippocampus in food-storers have recently been the subject of some controversy [Bolhuis and Macphail, 2001; Macphail and Bolhuis, 2001]. These critiques are based on misconceptions about the nature of adaptive specializations in cognition, misconceptions about the uniformity of results to be expected from applying the comparative method to data from a wide range of species, and a narrow view of what kinds of cognitive adaptations are theoretically interesting. New analyses of why food-storers (black-capped chickadees, Poecile Atricapilla) respond preferentially to spatial over color cues when both are relevant in a memory task show that this reflects a relative superiority of spatial memory as compared to memory for color rather than exceptional spatial attention or spatial discrimination ability. New studies of chickadees from more or less harsh winter climates also support the adaptive specialization hypothesis and suggest that within-species comparisons may be especially valuable for unraveling details of the relationships among ecology, memory, and brain in food-storing species.  
  Address Department of Psychology, University of Toronto, Toronto, Ont., M5S 3G3, Canada. shettle@psych.utoronto.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12937349 Approved no  
  Call Number refbase @ user @ Serial 367  
Permanent link to this record
 

 
Author Zentall, T.R.; Clement, T.S. openurl 
  Title (up) Memory mechanisms in pigeons: evidence of base-rate neglect Type Journal Article
  Year 2002 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 28 Issue 1 Pages 111-115  
  Keywords Animals; Columbidae; Discrimination Learning; Memory/*physiology; Random Allocation; Reaction Time; Reinforcement (Psychology); Retention (Psychology)  
  Abstract In delayed matching to sample, once acquired, pigeons presumably choose comparisons according to their memory for (the strength of) the sample. When memory for the sample is sufficiently weak, comparison choice should depend on the history of reinforcement associated with each of the comparison stimuli. In the present research, pigeons acquired two matching tasks in which Sample S1 was associated with one comparison from each task, C1 and C3, whereas Sample S2 was associated with Comparison C2, and Sample S3 was associated with Comparison C4. As the retention interval increased, the pigeons showed a bias to choose the comparison (C1 or C3) associated with the more frequently occurring sample (S1). Thus, pigeons were sensitive also to the (irrelevant) likelihood that each of the samples was presented. The results suggest that pigeons may allow their reference memory for the overall sample frequency to influence comparison choice, independent of the comparison stimuli present.  
  Address Department of Psychology, University of Kentucky, Lexington, Kentucky 40506-0044, USA. zentall@pop.uky.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11868229 Approved no  
  Call Number refbase @ user @ Serial 242  
Permanent link to this record
 

 
Author Hodgson, Z.G.; Healy, S.D. doi  openurl
  Title (up) Preference for spatial cues in a non-storing songbird species Type Journal Article
  Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 3 Pages 211-214  
  Keywords Animals; Association Learning/*physiology; *Cues; Feeding Behavior/physiology; Female; Male; Memory/*physiology; Sex Factors; Songbirds/*physiology; Space Perception/*physiology; Spatial Behavior/*physiology  
  Abstract Male mammals typically outperform their conspecific females on spatial tasks. A sex difference in cues used to solve the task could underlie this performance difference as spatial ability is reliant on appropriate cue use. Although comparative studies of memory in food-storing and non-storing birds have examined species differences in cue preference, few studies have investigated differences in cue use within a species. In this study, we used a one-trial associative food-finding task to test for sex differences in cue use in the great tit, Parus major. Birds were trained to locate a food reward hidden in a well covered by a coloured cloth. To determine whether the colour of the cloth or the location of the well was learned during training, the birds were presented with three wells in the test phase: one in the original location, but covered by a cloth of a novel colour, a second in a new location covered with the original cloth and a third in a new location covered by a differently coloured cloth. Both sexes preferentially visited the well in the training location rather than either alternative. As great tits prefer colour cues over spatial cues in one-trial associative conditioning tasks, cue preference appears to be related to the task type rather than being species dependent.  
  Address Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh, EH9 3JT, UK. s.healy@ed.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15611879 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2499  
Permanent link to this record
 

 
Author Hampton, R.R. doi  openurl
  Title (up) Rhesus monkeys know when they remember Type Journal Article
  Year 2001 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.  
  Volume 98 Issue 9 Pages 5359-5362  
  Keywords Animals; Choice Behavior/physiology; Cognition/*physiology; Cues; Food Preferences/psychology; Macaca mulatta/*physiology/*psychology; Male; Memory/*physiology; Probability; Psychological Tests; Reproducibility of Results; Sensitivity and Specificity  
  Abstract Humans are consciously aware of some memories and can make verbal reports about these memories. Other memories cannot be brought to consciousness, even though they influence behavior. This conspicuous difference in access to memories is central in taxonomies of human memory systems but has been difficult to document in animal studies, suggesting that some forms of memory may be unique to humans. Here I show that rhesus macaque monkeys can report the presence or absence of memory. Although it is probably impossible to document subjective, conscious properties of memory in nonverbal animals, this result objectively demonstrates an important functional parallel with human conscious memory. Animals able to discern the presence and absence of memory should improve accuracy if allowed to decline memory tests when they have forgotten, and should decline tests most frequently when memory is attenuated experimentally. One of two monkeys examined unequivocally met these criteria under all test conditions, whereas the second monkey met them in all but one case. Probe tests were used to rule out “cueing” by a wide variety of environmental and behavioral stimuli, leaving detection of the absence of memory per se as the most likely mechanism underlying the monkeys' abilities to selectively decline memory tests when they had forgotten.  
  Address Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Building 49, Room 1B-80, Bethesda, MD 20892, USA. robert@ln.nimh.nih.gov  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11274360 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2824  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print