toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Matsuzawa, T. openurl 
  Title Use of numbers by a chimpanzee Type Journal Article
  Year 1985 Publication Nature Abbreviated Journal Nature  
  Volume 315 Issue 6014 Pages 57-59  
  Keywords Animals; Behavior, Animal/physiology; Cognition; Female; Mathematics; Pan troglodytes/*physiology  
  Abstract Recent studies have examined linguistic abilities in apes. However, although human mathematical abilities seem to be derived from the same foundation as those in language, we have little evidence for mathematical abilities in apes (but for exceptions see refs 7-10). In the present study, a 5-yr-old female chimpanzee (Pan troglodytes), 'Ai', was trained to use Arabic numerals to name the number of items in a display. Ai mastered numerical naming from one to six and was able to name the number, colour and object of 300 types of samples. Although no particular sequence of describing samples was required, the chimpanzee favoured two sequences (colour/object/number and object/colour/number). The present study demonstrates that the chimpanzee was able to describe the three attributes of the sample items and spontaneously organized the 'word order'.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:3990808 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2793  
Permanent link to this record
 

 
Author Pepperberg, I.M. doi  openurl
  Title Grey parrot numerical competence: a review Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 377-391  
  Keywords Animals; *Behavior, Animal; *Comprehension; *Concept Formation; *Mathematics; *Parrots  
  Abstract The extent to which humans and nonhumans share numerical competency is a matter of debate. Some researchers argue that nonhumans, lacking human language, possess only a simple understanding of small quantities, generally less than four. Animals that have, however, received some training in human communication systems might demonstrate abilities intermediate between those of untrained nonhumans and humans. Here I review data for a Grey parrot (Psittacus erithacus) that has been shown to quantify sets of up to and including six items (including heterogeneous subsets) using vocal English labels, to comprehend these labels fully, and to have a zero-like concept. Recent research demonstrates that he can also sum small quantities. His success shows that he understands number symbols as abstract representations of real-world collections, and that his sense of number compares favorably to that of chimpanzees and young human children.  
  Address Department of Psychology, Brandeis University, Waltham, MA 02454, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16909236 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2448  
Permanent link to this record
 

 
Author Real, L.A. openurl 
  Title Animal choice behavior and the evolution of cognitive architecture Type Journal Article
  Year 1991 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 253 Issue 5023 Pages 980-986  
  Keywords Animals; Bees/genetics/*physiology; Biomechanics; *Choice Behavior; *Cognition; *Evolution; Mathematics; Models, Genetic; Probability  
  Abstract Animals process sensory information according to specific computational rules and, subsequently, form representations of their environments that form the basis for decisions and choices. The specific computational rules used by organisms will often be evolutionarily adaptive by generating higher probabilities of survival, reproduction, and resource acquisition. Experiments with enclosed colonies of bumblebees constrained to foraging on artificial flowers suggest that the bumblebee's cognitive architecture is designed to efficiently exploit floral resources from spatially structured environments given limits on memory and the neuronal processing of information. A non-linear relationship between the biomechanics of nectar extraction and rates of net energetic gain by individual bees may account for sensitivities to both the arithmetic mean and variance in reward distributions in flowers. Heuristic rules that lead to efficient resource exploitation may also lead to subjective misperception of likelihoods. Subjective probability formation may then be viewed as a problem in pattern recognition subject to specific sampling schemes and memory constraints.  
  Address Department of Biology, University of North Carolina, Chapel Hill 27599-3280  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1887231 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2846  
Permanent link to this record
 

 
Author Rumbaugh, D.M.; Savage-Rumbaugh, S.; Hegel, M.T. openurl 
  Title Summation in the chimpanzee (Pan troglodytes) Type Journal Article
  Year 1987 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 13 Issue 2 Pages 107-115  
  Keywords Animals; Choice Behavior; *Cognition; Male; *Mathematics; *Pan troglodytes; Visual Perception  
  Abstract In this research, we asked whether 2 chimpanzee (Pan troglodytes) subjects could reliably sum across pairs of quantities to select the greater total. Subjects were allowed to choose between two trays of chocolates. Each tray contained two food wells. To select the tray containing the greater number of chocolates, it was necessary to sum the contents of the food wells on each tray. In experiments where food wells contained from zero to four chocolates, the chimpanzees chose the greater value of the summed wells on more than 90% of the trials. In the final experiment, the maximum number of chocolates assigned to a food well was increased to five. Choice of the tray containing the greater sum still remained above 90%. In all experiments, subjects reliably chose the greater sum, even though on many trials a food well on the “incorrect” tray held more chocolates than either single well on the “correct” tray. It was concluded that without any known ability to count, these chimpanzees used some process of summation to combine spatially separated quantities. Speculation regarding the basis for summation includes consideration of perceptual fusion of pairs of quantities and subitization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:3572305 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2785  
Permanent link to this record
 

 
Author Staniar, W.B.; Kronfeld, D.S.; Hoffman, R.M.; Wilson, J.A.; Harris, P.A. doi  openurl
  Title Weight prediction from linear measures of growing Thoroughbreds Type Journal Article
  Year 2004 Publication Equine veterinary journal Abbreviated Journal Equine Vet J  
  Volume 36 Issue 2 Pages 149-154  
  Keywords Animal Nutrition Physiology; Animals; Biometry; Body Weight/*physiology; Female; Horses/*anatomy & histology/*growth & development; Male; Mathematics; Predictive Value of Tests; Reproducibility of Results; Sensitivity and Specificity  
  Abstract REASON FOR PERFORMING STUDY: Monitoring weight of foals is a useful management practice to aid in maximising athletic potential while minimising risks associated with deviations from normal growth. OBJECTIVE: To develop predictive equations for weight, based on linear measurements of growing Thoroughbreds (TBs). METHODS: Morphometric equations predicting weight from measurements of the trunk and legs were developed from data of 153 foals. The accuracy, precision and bias of the best fitting equation were compared to published equations using a naive data set of 22 foals. RESULTS: Accuracy and precision were maximised with a broken line relating calculated volumes (V(t + l)) to measured weights. Use of the broken line is a 2 step process. V(t + l) is calculated from linear measures (m) of girth (G), carpus circumference (C), and length of body (B) and left forelimb (F). V(t + I) = ([G2 x B] + 4[C2 x F]) 4pi. If V(t + l) < 0.27 m3, weight is estimated: Weight (kg) = V(t + l) x 1093. If V(t + l) > or = 0.27 m3: Weight (kg) = V(t + l) x 984 + 24. The broken line was more accurate and precise than 3 published equations predicting the weight of young TBs. CONCLUSIONS: Estimation of weight using morphometric equations requires attention to temporal changes in body shape and density; hence, a broken line is needed. Including calculated leg volume in the broken line model is another contributing factor to improvement in predictive capability. POTENTIAL RELEVANCE: The broken line maximises its value to equine professionals through its accuracy, precision and convenience.  
  Address Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0306, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15038438 Approved no  
  Call Number Serial 1806  
Permanent link to this record
 

 
Author Uller, C.; Jaeger, R.; Guidry, G.; Martin, C. doi  openurl
  Title Salamanders ( Plethodon cinereus) go for more: rudiments of number in an amphibian Type Journal Article
  Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 6 Issue 2 Pages 105-112  
  Keywords Animals; *Cognition; Discrimination Learning; Female; Male; Mathematics; *Urodela  
  Abstract Techniques traditionally used in developmental research with infants have been widely used with nonhuman primates in the investigation of comparative cognitive abilities. Recently, researchers have shown that human infants and monkeys select the larger of two numerosities in a spontaneous forced-choice discrimination task. Here we adopt the same method to assess in a series of experiments spontaneous choice of the larger of two numerosities in a species of amphibian, red-backed salamanders ( Plethodon cinereus). The findings indicate that salamanders “go for more,” just like human babies and monkeys. This rudimentary capacity is a type of numerical discrimination that is spontaneously present in this amphibian.  
  Address Institute of Cognitive Science, University of Louisiana at Lafayette, Lafayette, LA 70504-3772, USA. uller@louisiana.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12709845 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2575  
Permanent link to this record
 

 
Author West, R.E.; Young, R.J. doi  openurl
  Title Do domestic dogs show any evidence of being able to count? Type Journal Article
  Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 5 Issue 3 Pages 183-186  
  Keywords Animal Feed; Animals; Behavior, Animal; *Cognition; *Dogs; Female; Male; *Mathematics; Reinforcement (Psychology); Visual Perception  
  Abstract Numerical competence has been demonstrated in a wide range of animal species. The level of numerical abilities shown ranges from simple relative numerousness judgements to true counting. In this study we used the preferential looking technique to test whether 11 pet dogs could count. The dogs were presented with three simple calculations: “1+1=2”; “1+1=1”; and “1+1=3”. These calculations were performed by presenting the dogs with treats that were placed behind a screen that allowed manipulation of the outcome of the calculation. When the dogs expected the outcome they spent the same amount of time looking at the result of the calculation as they did on the initial presentation. However, when the result was unexpected dogs spent significantly longer looking at the outcome of the calculation. The results suggest that the dogs were anticipating the outcome of the calculations they observed, thus suggesting that dogs may have a rudimentary ability to count.  
  Address De Montfort University-Lincoln, Caythorpe, Grantham, Lincolnshire, NG32 3EP, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12357291 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2594  
Permanent link to this record
 

 
Author Wilson, M.T.; Ranson, R.J.; Masiakowski, P.; Czarnecka, E.; Brunori, M. openurl 
  Title A kinetic study of the pH-dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase) Type Journal Article
  Year 1977 Publication European Journal of Biochemistry / FEBS Abbreviated Journal Eur J Biochem  
  Volume 77 Issue 1 Pages 193-199  
  Keywords Animals; Cyanides; *Cytochrome c Group/metabolism; Ferric Compounds; Horses; Hydrogen-Ion Concentration; Imidazoles; Kinetics; Mathematics; Myocardium/enzymology; *Oligopeptides/metabolism; *Peptide Fragments/metabolism; Protein Binding; Spectrophotometry; Temperature  
  Abstract The ferric form of the haem undecapeptide, derived from horse cytochrome c by peptic digestion, undergoes at least three pH-induced transitions with pK values of 3.4, 5.8 and 7.6. Temperature-jump experiments suggest that the first of these is due to the binding of a deprotonated imidazole group to the feric iron while the second and third arise from the binding of the two available amino groups present (the alpha-NH2 of valine and the epsilon-NH2 of lysine). Molecular models indicate that steric retraints on the peptide dictate that these amino groups may only coordinate to iron atoms via intermolecular bonds, thus leading to the polymerization of the peptide. Cyanide binding studies are in agreement with these conclusions and also yield a value of 3.6 X 10(6) M-1 s-1 for the intrinsic combination constant of CN- anion with the haem. A model is proposed which describes the pH-dependent properties of the ferric undecapeptide.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20304 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3814  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print