|   | 
Details
   web
Records
Author Meershoek, L.S.; Schamhardt, H.C.; Roepstorff, L.; Johnston, C.
Title Forelimb tendon loading during jump landings and the influence of fence height Type Journal Article
Year 2001 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 33 Pages 6-10
Keywords Animals; Biomechanics; Forelimb/injuries/physiology; Horses/injuries/*physiology; Lameness, Animal/etiology; Ligaments, Articular/*physiology; Locomotion/*physiology; Physical Conditioning, Animal; Tendon Injuries/complications/physiopathology/veterinary; Tendons/*physiology; Weight-Bearing/physiology
Abstract Lameness in athletic horses is often caused by forelimb tendon injuries, especially in the interosseus tendon (TI) and superficial digital flexor tendon (SDF), but also in the accessory ligament (AL) of the deep digital flexor tendon (DDF). In an attempt to explain the aetiology of these injuries, the present study investigated the loading of the tendons during landing after a jump. In jumping horses, the highest forces can be expected in the trailing limb during landing. Therefore, landing kinematics and ground reaction forces of the trailing forelimb were measured from 6 horses jumping single fences with low to medium heights of 0.80, 1.00 and 1.20 m. The tendon forces were calculated using inverse dynamics and an in vitro model of the lower forelimb. Calculated peak forces in the TI, SDF and DDF + AL during landing were 15.8, 13.9 and 11.7 kN respectively. The relative loading of the tendons (landing forces compared with failure forces determined in a separate study) increased from DDF to TI to SDF and was very high in SDF. This explains the low injury incidence of the DDF and the high injury incidence of the SDF. Fence height substantially influenced SDF forces, whereas it hardly influenced TI forces and did not influence AL strain. Reduction of fence height might therefore limit the risks for SDF injuries, but not for TI and AL injuries.
Address Department of Veterinary Anatomy and Physiology, Institute for Fundamental and Clinical Human Movement Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:11721571 Approved no
Call Number Equine Behaviour @ team @ Serial 3786
Permanent link to this record
 

 
Author Moehlman, P.D.
Title Behavioral patterns and communication in feral asses (Equus africanus) Type Journal Article
Year 1998 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.
Volume 60 Issue 2-3 Pages 125-169
Keywords Equids; Feral asses; Behavior patterns; Facial expressions; Postures; Locomotion
Abstract The behavior of feral populations of the African wild ass (Equus africanus) were studied in the Northern Panamint Range of Death Valley National Monument for 20 months from 1970 to 1973 [Moehlman, P.D., 1974. Behavior and ecology of feral asses (Equus asinus). PhD dissertation, University of Wisconsin, Madison, 251 pp.; Moehlman, P.D., 1979. Behavior and ecology of feral asses (Equus asinus). Natl. Geogr. Soc. Res. Reports, 1970: 405-411]. Maintenance behavior is described and behavior sequences that were used in social interactions are quantified by sex and age class. Agonistic, sexual, and greeting behavior patterns are described and analyzed in conjunction with the responses they elicited. Mutual grooming mainly occurred between adult males, and between females and their offspring. Five types of vocalizations were distinguished: brays, grunts, growls, snorts, and whuffles. A second population was studied for 1 month on Ossabaw Island, GA (Moehlman, 1979). This population had more permanent social groups and had a higher rate of mutual grooming and foal social play.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 2381
Permanent link to this record
 

 
Author Mrosovsky, N.; Shettleworth, S.J.
Title Further studies of the sea-finding mechanism in green turtle hatchlings Type Journal Article
Year 1974 Publication Behaviour Abbreviated Journal Behaviour
Volume 51 Issue 3-4 Pages 195-208
Keywords Animals; *Animals, Newborn/physiology; Contact Lenses; Locomotion; *Orientation; Retina/physiology; *Turtles/physiology; Visual Fields; *Visual Perception; Water
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0005-7959 ISBN Medium
Area Expedition Conference
Notes PMID:4447586 Approved no
Call Number refbase @ user @ Serial 389
Permanent link to this record
 

 
Author Parsons, K.J.; Wilson, A.M.
Title The use of MP3 recorders to log data from equine hoof mounted accelerometers Type Journal Article
Year 2006 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 38 Issue 7 Pages 675-680
Keywords Acceleration; Animals; Equipment and Supplies/standards/*veterinary; Hoof and Claw/*physiology; Horses/*physiology; Locomotion/*physiology; Physical Conditioning, Animal/*physiology; Reproducibility of Results; Running/physiology; Sensitivity and Specificity
Abstract REASONS FOR PERFORMING STUDy: MP3 recorders are readily available, small, lightweight and low cost, providing the potential for logging analogue hoof mounted accelerometer signals for the characterisation of equine locomotion. These, however, require testing in practice. OBJECTIVES: To test whether 1) multiple MP3 recorders can maintain synchronisation, giving the ability to synchronise independent recorders for the logging of multiple limbs simultaneously; and 2) features of a foot mounted accelerometer signal attributable to foot-on and foot-off can be accurately identified from horse foot mounted accelerometers logged directly into an MP3 recorder. METHODS: Three experiments were performed: 1) Maintenance of synchronisation was assessed by counting the number of samples recorded by each of 4 MP3 recorders while mounted on a trotting horse and over 2 consecutive 30 min periods in 8 recorders on a bench. 2) Foot-on and foot-off times obtained from manual transcription of MP3 logged data and directly logged accelerometer signal were compared. 3) MP3/accelerometer acquisition units were used to log accelerometer signals from racehorses during extended training sessions. RESULTS: Mean absolute error of synchronisation between MP3 recorders was 10 samples per million (compared to mean number of samples, range 1-32 samples per million). Error accumulation showed a linear correlation with time. Features attributable to foot on and foot off were equally identifiable from the MP3 recorded signal over a range of equine gaits. CONCLUSIONS: Multiple MP3 recorders can be synchronised and used as a relatively cheap, robust, reliable and accurate logging system when combined with an accelerometer and external battery for the specific application of the measurement of stride timing variables across the range of equine gaits during field locomotion. POTENTIAL RELEVANCE: Footfall timings can be used to identify intervals between the fore and hind contacts, the identification of diagonal advanced placement and to calculate stride timing variables (stance time, protraction time and stride time). These parameters are invaluable for the characterisation and assessment of equine locomotion.
Address Structure and Motion Laboratory, The Royal Veterinary College, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:17228585 Approved no
Call Number Equine Behaviour @ team @ Serial 4022
Permanent link to this record
 

 
Author Pearce, G.P.; May-Davis, S.; Greaves, D.
Title Femoral asymmetry in the Thoroughbred racehorse Type Journal Article
Year 2005 Publication Australian Veterinary Journal Abbreviated Journal Aust Vet J
Volume 83 Issue 6 Pages 367-370
Keywords Animals; Cumulative Trauma Disorders/pathology/*veterinary; Femur/*pathology; Horse Diseases/*pathology/physiopathology; Horses; Locomotion; Physical Conditioning, Animal/*physiology
Abstract OBJECTIVE: To investigate the occurrence of geometrical asymmetries in the macro-architecture of left and right femurs from Thoroughbred racehorses previously used in competitive training and racing in New South Wales, Australia. METHODS: Detailed postmortem measurements were made of 37 characteristics of left and right femurs from eleven Thoroughbred racehorses euthanased for reasons unrelated to the study. Measurements focused on articulating surfaces and sites of attachment of muscles and ligaments known to be associated with hindlimb locomotion. RESULTS: Five measurements were significantly larger in left compared to right femurs (P < 0.05). The regions showing significant differences between left and right limbs were proximal cranial and overhead medio-lateral widths, greater trochanter depth, depth of the fovea in the femoral head and distal inter-epicondylar width. CONCLUSION: The left-right differences in femoral morphology were associated with sites of muscle and ligament attachment known to be involved with hindlimb function in negotiating turns. These differences may be the result of selection pressure for racing performance on curved race tracks and/or adaptations related to asymmetrical loading of the outside hindlimb associated with repeated negotiation of turns on such tracks.
Address Faculty of Rural Management, University of Sydney, Leeds Parade, Orange, New South Wales 2800. gpp28@cam.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0005-0423 ISBN Medium
Area Expedition Conference
Notes PMID:15986917 Approved no
Call Number Equine Behaviour @ team @ Serial 4036
Permanent link to this record
 

 
Author Powers, P.; Harrison, A.
Title Effects of the rider on the linear kinematics of jumping horses Type Journal Article
Year 2002 Publication Sports Biomechanics / International Society of Biomechanics in Sports Abbreviated Journal Sports Biomech
Volume 1 Issue 2 Pages 135-146
Keywords Animals; Behavior, Animal/*physiology; Biomechanics; Communication; Exertion/*physiology; Gait/*physiology; Horses/*physiology; Humans; Locomotion/*physiology; Posture/*physiology; Task Performance and Analysis; Video Recording; Weight-Bearing/*physiology
Abstract This study examined the effects of the rider on the linear projectile kinematics of show-jumping horses. SVHS video recordings (50 Hz) of eight horses jumping a vertical fence 1 m high were used for the study. Horses jumped the fence under two conditions: loose (no rider or tack) and ridden. Recordings were digitised using Peak Motus. After digitising the sequences, each rider's digitised data were removed from the ridden horse data so that three conditions were examined: loose, ridden (including the rider's data) and riderless (rider's data removed). Repeated measures ANOVA revealed significant differences between ridden and loose conditions for CG height at take-off (p < 0.001), CG distance to the fence at take-off (p = 0.001), maximum CG during the suspension phase (p < 0.001), CG position over the centre of the fence (p < 0.001), CG height at landing (p < 0.001), and vertical velocity at take-off (p < 0.001). The results indicated that the rider's effect on jumping horses was primarily due to behavioural changes in the horses motion (resulting from the rider's instruction), rather than inertial effects (due to the positioning of the rider on the horse). These findings have implications for the coaching of riders and horses.
Address Department of PE and Sports Sciences, University of Limerick, Limerick, Ireland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-3141 ISBN Medium
Area Expedition Conference
Notes PMID:14658371 Approved no
Call Number Serial 1904
Permanent link to this record
 

 
Author Ratzlaff, M.H.; Wilson, P.D.; Hyde, M.L.; Balch, O.K.; Grant, B.D.
Title Relationship between locomotor forces, hoof position and joint motion during the support phase of the stride of galloping horses Type Journal Article
Year 1993 Publication Acta Anatomica Abbreviated Journal Acta Anat (Basel)
Volume 146 Issue 2-3 Pages 200-204
Keywords Animals; Equipment Design; Hoof and Claw/*physiology; Horses/*physiology; Joints/*physiology; *Locomotion; Motor Activity/*physiology; Physiology/instrumentation; *Posture; Shoes; Transducers
Abstract Three methods were used simultaneously to determine the relationships between the vertical forces exerted on the hooves and the positions of the limbs and hooves at the times of peak vertical forces from 2 horses galloping on a track straightaway. Vertical forces were recorded from an instrumented shoe, fetlock joint motion was measured with an electrogoniometer and the angles of the carpus, fetlock and hoof were determined from slow-motion films. At hoof contact, the mean angles of the carpus and fetlock were 181-182 degrees and 199-206 degrees, respectively. Peak vertical forces on the heel occurred at or near maximum extension of the carpal and fetlock joints. Peak forces on the toe occurred during flexion of the fetlock joint and at mean hoof angles of 28-31 degrees from the horizontal. The mean angles of the hoof from the horizontal at the time of heel contact were 6-7 degrees. Hoof lift occurred at mean carpal angles of 173-174 degrees and mean fetlock angles of 199-200 degrees.
Address Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman 99164-6520
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-5180 ISBN Medium
Area Expedition Conference
Notes PMID:8470468 Approved no
Call Number refbase @ user @ Serial 1945
Permanent link to this record
 

 
Author Robert, C.; Audigie, F.; Valette, J.P.; Pourcelot, P.; Denoix, J.M.
Title Effects of treadmill speed on the mechanics of the back in the trotting saddlehorse Type Journal Article
Year 2001 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 33 Pages 154-159
Keywords Animals; Biomechanics; Electromyography/veterinary; Exercise Test/veterinary; Horses/*physiology; Locomotion/*physiology; Muscle, Skeletal/*physiology; Range of Motion, Articular/*physiology; Spine/*physiology; Video Recording
Abstract Speed related changes in trunk mechanics have not yet been investigated, although high-speed training is currently used in the horse. To evaluate the effects of speed on back kinematics and trunk muscles activity, 4 saddle horses were recorded while trotting on a horizontal treadmill at speeds ranging from 3.5 to 6 m/s. The 3-dimensional (3-D) trajectories of skin markers on the left side of the horse and the dorsal midline of the trunk were established. Electrical activity was simultaneously obtained from the longissimus dorsi (LD) and rectus abdominis (RA) muscles using surface electrodes. Ten consecutive strides were analysed for each horse at each of the 5 velocity steps. Electromyographic and kinematic data were time-standardised to the duration of the stride cycle and compared using an analysis of variance. The back extended during the first part of each diagonal stance phase when the RA was active and the back flexed during the second part of each diagonal stance phase when the LD was active. The onset and end of muscle activity came earlier in the stride cycle and muscle activity intensity increased when speed increased. The amplitude of vertical movement of the trunk and the maximal angles of flexion decreased with increasing speed, whereas the extension angles remained unchanged. This resulted in a decreased range of back flexion-extension. This study confirms that the primary role of trunk muscles is to control the stiffness of the back rather than to induce movements. Understanding the effects of speed on the back of healthy horses is a prerequisite for the prevention and treatment of back pathology.
Address UMR INRA, Biomecanique et Pathologie Locomotrice du Cheval, UP d'Anatomie, Ecole Nationale Veterinaire d'Alfort, 7 Avenue du General de Gaulle, F-94704 Maisons-Alfort, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:11721558 Approved no
Call Number Equine Behaviour @ team @ Serial 4050
Permanent link to this record
 

 
Author Rollot, Y.; Lecuyer, E.; Chateau, H.; Crevier-Denoix, N.
Title Development of a 3D model of the equine distal forelimb and of a GRF shoe for noninvasive determination of in vivo tendon and ligament loads and strains Type Journal Article
Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 36 Issue 8 Pages 677-682
Keywords Animals; Biomechanics; Floors and Floorcoverings; Forelimb/*physiology/ultrasonography; Gait/physiology; Horses/*physiology; Image Processing, Computer-Assisted; Imaging, Three-Dimensional/methods/*veterinary; Ligaments, Articular/*physiology; Locomotion/*physiology; Models, Biological; Shoes; Tendons/*physiology; Toe Joint/physiology/ultrasonography
Abstract REASONS FOR PERFORMING STUDY: As critical locomotion events (e.g. high-speed and impacts during racing, jump landing) may contribute to tendinopathies, in vivo recording of gaits kinematic and dynamic parameters is essential for 3D reconstruction and analysis. OBJECTIVE: To propose a 3D model of the forelimb and a ground reaction force recording shoe (GRF-S) for noninvasively quantifying tendon and ligament loads and strains. METHODS: Bony segments trajectories of forelimbs placed under a power press were recorded using triads of ultrasonic kinematic markers linked to the bones. Compression cycles (from 500-6000 N) were applied for different hoof orientations. Locations of tendon and ligament insertions were recorded with regard to the triads. The GRF-S recorded GRF over the hoof wall and used four 3-axis force sensors sandwiched between a support shoe and the shoe to be tested. RESULTS: Validation of the model by comparing calculated and measured superficial digital flexor tendon strains, and evaluation of the role of proximal interphalangeal joint in straight sesamoidean ligament and oblique sesamoidean ligament strains, were successfully achieved. Objective comparisons of the 3 components of GRF over the hoof for soft and hard grounds could be recorded, where the s.d. of GRF norm was more important on hard ground at walk and trot. CONCLUSIONS: Soft grounds (sand and rubber) dissipate energy by lowering GRF amplitude and diminish bounces and vibrations at impact. At comparable speed, stance phase was longer on soft sand ground. POTENTIAL RELEVANCE: The conjugate use of the GRF-S and the numerical model would help to quantify and analyse ground/shoe combination on comfort, propulsion efficiency or lameness recovery.
Address UMR INRA-ENVA de Biomecanique et Pathologie Locomotrice du Cheval, Ecole Nationale Veterinaire d'Alfort, 7, Avenue du General de Gaulle, 94704 Maisons-Alfort, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:15656495 Approved no
Call Number Equine Behaviour @ team @ Serial 3769
Permanent link to this record
 

 
Author Santamaria, S.; Back, W.; van Weeren, P.R.; Knaap, J.; Barneveld, A.
Title Jumping characteristics of naive foals: lead changes and description of temporal and linear parameters Type Journal Article
Year 2002 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 34 Pages 302-307
Keywords Animals; Animals, Newborn/*physiology; Biomechanics; Female; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Male
Abstract The selection of foals as future showjumpers remains a subjective process based on qualitative parameters; and hence, frequently suffers from disparity in the criteria used by experts in the field. A detailed biomechanical description of foals while jumping would be most helpful in providing a better basis for the accurate assessment of their future athletic ability. The Qualisys Pro Reflex system was used to capture 3-dimensional kinematics of 41 Dutch Warmblood foals age 6 months free jumping a vertical fence, preceded by a cross pole fence. The left lead was the most preferred lead for both the fore- and hindlimbs, from the landing following the cross poles to the first move-off stride after clearing the vertical fence. The foals displayed a high incidence of rotary gallop during both the jump stride (divided into take-off, jump suspension and landing) and the first move-off stride, while change of lead was frequently observed during jump suspension. At the take-off side of the fence, the trailing forelimb in the last approach stride was placed furthest from the fence, whereas the trailing hindlimb at take-off was placed closest (P<0.05). At the landing side, the trailing forelimb was the closest and the leading hindlimb of the move-off stride 1 was the furthest (P<0.05). The trailing forelimb in the approach stride 1 had a significantly longer stance phase duration than the leading forelimb. At landing, the leading forelimb stance phase lasted longer than that of the trailing forelimb (P<0.05). The hindlimbs did not differ in their stance phase duration at take-off. The height reached by the hooves above the fence top was significantly greater in the hind limbs (P<0.05). In addition, the hindlimbs (97.1 +/- 2.6%) shortened more than the forelimbs (92.6 +/- 5.7%) (P<0.05). It is concluded that the overall jumping technique of foals is similar to that reported in literature for mature horses. If the patterns are consistent throughout the rearing period, the quantitative analysis of the kinematics of free jumping foals may provide a valid quantitative basis for early selection.
Address Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:12405705 Approved no
Call Number Equine Behaviour @ team @ Serial 3784
Permanent link to this record