|   | 
Details
   web
Records
Author Levin, L.E.; Grillet, M.E.
Title [Diversified leadership: a social solution of problems in schools of fish] Type Journal Article
Year 1988 Publication (up) Acta Cientifica Venezolana Abbreviated Journal Acta Cient Venez
Volume 39 Issue 2 Pages 175-180
Keywords Animals; Fishes; *Leadership; Reversal Learning/*physiology; *Social Behavior
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Spanish Summary Language Original Title Liderazgo diversificado: una solucion social de problemas en el cardumen
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-5504 ISBN Medium
Area Expedition Conference
Notes PMID:3251383 Approved no
Call Number Serial 2045
Permanent link to this record
 

 
Author Petruso, E.J.; Fuchs, T.; Bingman, V.P.
Title Time-space learning in homing pigeons (Columba livia): orientation to an artificial light source Type Journal Article
Year 2007 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 2 Pages 181-188
Keywords Animals; Circadian Rhythm; Columbidae/*physiology; Homing Behavior/physiology; Learning/*physiology; *Light; Orientation/*physiology; Space Perception/*physiology; Time Perception/*physiology
Abstract Time-space learning reflects an ability to represent in memory event-stimulus properties together with the place and time of the event; a capacity well developed in birds. Homing pigeons were trained in an indoor octagonal arena to locate one food goal in the morning and a different food goal in the late afternoon. The goals differed with respect to their angular/directional relationship to an artificial light source located outside the arena. Further, the angular difference in reward position approximated the displacement of the sun's azimuth that would occur during the same time period. The experimental birds quickly learned the task, demonstrating the apparent ease with which birds can adopt an artificial light source to discriminate among alternative spatial responses at different times of the day. However, a novel midday probe session following successful learning revealed that the light source was interpreted as a stable landmark and not as a surrogate sun that would support compass orientation. Probe sessions following a phase shift of the light-dark cycle revealed that the mechanism employed to make the temporal discrimination was prevailingly based on an endogenous circadian rhythm and not an interval timing mechanism.
Address Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior Bowling Green State University, Bowling Green, OH 43403, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:17160343 Approved no
Call Number Equine Behaviour @ team @ Serial 2432
Permanent link to this record
 

 
Author Watanabe, S.; Troje, N.F.
Title Towards a “virtual pigeon”: a new technique for investigating avian social perception Type Journal Article
Year 2006 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 4 Pages 271-279
Keywords Animals; Behavioral Research/instrumentation/methods; Columbidae/*physiology; Computer Graphics; *Computer Simulation; Discrimination Learning/*physiology; Generalization (Psychology)/*physiology; Pattern Recognition, Visual/*physiology; Perceptual Masking/physiology; Rats; Recognition (Psychology)/physiology; *Social Behavior; User-Computer Interface
Abstract The purpose of the present study is to examine the applicability of a computer-generated, virtual animal to study animal cognition. Pigeons were trained to discriminate between movies of a real pigeon and a rat. Then, they were tested with movies of the computer-generated (CG) pigeon. Subjects showed generalization to the CG pigeon, however, they also responded to modified versions in which the CG pigeon was showing impossible movement, namely hopping and walking without its head bobbing. Hence, the pigeons did not attend to these particular details of the display. When they were trained to discriminate between the normal and the modified version of the CG pigeon, they were able to learn the discrimination. The results of an additional partial occlusion test suggest that the subjects used head movement as a cue for the usual vs. unusual CG pigeon discrimination.
Address Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, 108, Japan. swat@flet.keio.ac.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:17024508 Approved no
Call Number Equine Behaviour @ team @ Serial 2437
Permanent link to this record
 

 
Author Chiesa, A.D.; Pecchia, T.; Tommasi, L.; Vallortigara, G.
Title Multiple landmarks, the encoding of environmental geometry and the spatial logics of a dual brain Type Journal Article
Year 2006 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 4 Pages 281-293
Keywords Animals; Association Learning/*physiology; Chickens; *Cues; Dominance, Cerebral/*physiology; *Environment; Exploratory Behavior/*physiology; Logic; Space Perception/*physiology; Spatial Behavior/physiology
Abstract A series of place learning experiments was carried out in young chicks (Gallus gallus) in order to investigate how the geometry of a landmark array and that of a walled enclosure compete when disoriented animals could rely on both of them to re-orient towards the centre of the enclosure. A square-shaped array (four wooden sticks) was placed in the middle of a square-shaped enclosure, the two structures being concentric. Chicks were trained to ground-scratch to search for food hidden in the centre of the enclosure (and the array). To check for effects of array degradation, one, two, three or all landmarks were removed during test trials. Chicks concentrated their searching activity in the central area of the enclosure, but their accuracy was inversely contingent on the number of landmarks removed; moreover, the landmarks still present within the enclosure appeared to influence the shape of the searching patterns. The reduction in the number of landmarks affected the searching strategy of chicks, suggesting that they had focussed mainly on local cues when landmarks were present within the enclosure. When all the landmarks were removed, chicks searched over a larger area, suggesting an absolute encoding of distances from the local cues and less reliance on the relationships provided by the geometry of the enclosure. Under conditions of monocular vision, chicks tended to rely on different strategies to localize the centre on the basis of the eye (and thus the hemisphere) in use, the left hemisphere attending to details of the environment and the right hemisphere attending to the global shape.
Address Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, via S. Anastasio 12, 34100, Trieste, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16941155 Approved no
Call Number Equine Behaviour @ team @ Serial 2443
Permanent link to this record
 

 
Author Benard, J.; Stach, S.; Giurfa, M.
Title Categorization of visual stimuli in the honeybee Apis mellifera Type Journal Article
Year 2006 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 4 Pages 257-270
Keywords Animals; Bees/*physiology; Classification; Cognition/*physiology; Discrimination Learning/*physiology; Generalization, Stimulus/physiology; Pattern Recognition, Visual/*physiology; Photic Stimulation; Transfer (Psychology)/*physiology; Visual Perception/*physiology
Abstract Categorization refers to the classification of perceptual input into defined functional groups. We present and discuss evidence suggesting that stimulus categorization can also be found in an invertebrate, the honeybee Apis mellifera, thus underlining the generality across species of this cognitive process. Honeybees show positive transfer of appropriate responding from a trained to a novel set of visual stimuli. Such a transfer was demonstrated for specific isolated features such as symmetry or orientation, but also for assemblies (layouts) of features. Although transfer from training to novel stimuli can be achieved by stimulus generalization of the training stimuli, most of these transfer tests involved clearly distinguishable stimuli for which generalization would be reduced. Though in most cases specific experimental controls such as stimulus balance and discriminability are still required, it seems appropriate to characterize the performance of honeybees as reflecting categorization. Further experiments should address the issue of which categorization theory accounts better for the visual performances of honeybees.
Address Centre de Recherches sur la Cognition Animale (UMR 5169), CNRS – Universite Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 4, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16909238 Approved no
Call Number Equine Behaviour @ team @ Serial 2446
Permanent link to this record
 

 
Author Church, D.L.; Plowright, C.M.S.
Title Spatial encoding by bumblebees (Bombus impatiens) of a reward within an artificial flower array Type Journal Article
Year 2006 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 2 Pages 131-140
Keywords Animals; Appetitive Behavior/physiology; Association Learning/*physiology; Bees/*physiology; Chi-Square Distribution; *Cues; Female; Memory/physiology; Reward; Space Perception/*physiology; Spatial Behavior/*physiology
Abstract We presented bumblebees a spatial memory task similar to that used with other species (e.g., cats, dogs, and pigeons). In some conditions we allowed for presence of scent marks in addition to placing local and global spatial cues in conflict. Bumblebees (Bombus impatiens) were presented an array of artificial flowers within a flight cage, one flower offering reward (S+), while the others were empty (S-). Bees were tested with empty flowers. In Experiment 1, flowers were either moved at the time of testing or not. Bees returned to the flower in the same absolute position of the S+ (the flower-array-independent (FAI) position), even if it was in the wrong position relative to the S- and even when new flower covers prevented the use of possible scent marks. New flower covers (i.e., without possible scent marks) had the effect of lowering the frequency of probing behavior. In Experiment 2, the colony was moved between training and testing. Again, bees chose the flower in the FAI position of the S+, and not the flower that would be chosen using strictly memory for a flight vector. Together, these experiments show that to locate the S+ bees did not rely on scent marks nor the positions of the S-, though the S- were prominent objects close to the goal. Also, bees selected environmental features to remember the position of the S+ instead of relying upon a purely egocentric point of view. Similarities with honeybees and vertebrates are discussed, as well as possible encoding mechanisms.
Address Psychology Department, Bag Service #45444, University of New Brunswick, Fredericton, NB, E3B 6E4, Canada. dchurchl@unb.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16416106 Approved no
Call Number Equine Behaviour @ team @ Serial 2474
Permanent link to this record
 

 
Author Hodgson, Z.G.; Healy, S.D.
Title Preference for spatial cues in a non-storing songbird species Type Journal Article
Year 2005 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 8 Issue 3 Pages 211-214
Keywords Animals; Association Learning/*physiology; *Cues; Feeding Behavior/physiology; Female; Male; Memory/*physiology; Sex Factors; Songbirds/*physiology; Space Perception/*physiology; Spatial Behavior/*physiology
Abstract Male mammals typically outperform their conspecific females on spatial tasks. A sex difference in cues used to solve the task could underlie this performance difference as spatial ability is reliant on appropriate cue use. Although comparative studies of memory in food-storing and non-storing birds have examined species differences in cue preference, few studies have investigated differences in cue use within a species. In this study, we used a one-trial associative food-finding task to test for sex differences in cue use in the great tit, Parus major. Birds were trained to locate a food reward hidden in a well covered by a coloured cloth. To determine whether the colour of the cloth or the location of the well was learned during training, the birds were presented with three wells in the test phase: one in the original location, but covered by a cloth of a novel colour, a second in a new location covered with the original cloth and a third in a new location covered by a differently coloured cloth. Both sexes preferentially visited the well in the training location rather than either alternative. As great tits prefer colour cues over spatial cues in one-trial associative conditioning tasks, cue preference appears to be related to the task type rather than being species dependent.
Address Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh, EH9 3JT, UK. s.healy@ed.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15611879 Approved no
Call Number Equine Behaviour @ team @ Serial 2499
Permanent link to this record
 

 
Author Blaisdell, A.P.; Cook, R.G.
Title Integration of spatial maps in pigeons Type Journal Article
Year 2005 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 8 Issue 1 Pages 7-16
Keywords Animals; Appetitive Behavior/physiology; Association Learning/*physiology; Columbidae/*physiology; Conditioning, Classical/physiology; *Cues; Problem Solving/*physiology; Space Perception/*physiology; Spatial Behavior/physiology
Abstract The integration of spatial maps in pigeons was investigated using a spatial analog to sensory preconditioning. The pigeons were tested in an open-field arena in which they had to locate hidden food among a 4x4 grid of gravel-filled cups. In phase 1, the pigeons were exposed to a consistent spatial relationship (vector) between landmark L (a red L-shaped block of wood), landmark T (a blue T-shaped block of wood) and the hidden food goal. In phase 2, the pigeons were then exposed to landmark T with a different spatial vector to the hidden food goal. Following phase 2, pigeons were tested with trials on which they were presented with only landmark L to examine the potential integration of the phase 1 and 2 vectors via their shared common elements. When these test trials were preceded by phase 1 and phase 2 reminder trials, pigeons searched for the goal most often at a location consistent with their integration of the L-->T phase 1 and T-->phase 2 goal vectors. This result indicates that integration of spatial vectors acquired during phases 1 and 2 allowed the pigeons to compute a novel L-->goal vector. This suggests that spatial maps may be enlarged by successively integrating additional spatial information through the linkage of common elements.
Address Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA. blaisdell@psych.ucla.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15221636 Approved no
Call Number Equine Behaviour @ team @ Serial 2521
Permanent link to this record
 

 
Author Parr, L.A.
Title Perceptual biases for multimodal cues in chimpanzee (Pan troglodytes) affect recognition Type Journal Article
Year 2004 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 7 Issue 3 Pages 171-178
Keywords Acoustic Stimulation; *Animal Communication; Animals; Auditory Perception/physiology; Cues; Discrimination Learning/*physiology; Facial Expression; Female; Male; Pan troglodytes/*psychology; Perceptual Masking/*physiology; Photic Stimulation; Recognition (Psychology)/*physiology; Visual Perception/physiology; *Vocalization, Animal
Abstract The ability of organisms to discriminate social signals, such as affective displays, using different sensory modalities is important for social communication. However, a major problem for understanding the evolution and integration of multimodal signals is determining how humans and animals attend to different sensory modalities, and these different modalities contribute to the perception and categorization of social signals. Using a matching-to-sample procedure, chimpanzees discriminated videos of conspecifics' facial expressions that contained only auditory or only visual cues by selecting one of two facial expression photographs that matched the expression category represented by the sample. Other videos were edited to contain incongruent sensory cues, i.e., visual features of one expression but auditory features of another. In these cases, subjects were free to select the expression that matched either the auditory or visual modality, whichever was more salient for that expression type. Results showed that chimpanzees were able to discriminate facial expressions using only auditory or visual cues, and when these modalities were mixed. However, in these latter trials, depending on the expression category, clear preferences for either the visual or auditory modality emerged. Pant-hoots and play faces were discriminated preferentially using the auditory modality, while screams were discriminated preferentially using the visual modality. Therefore, depending on the type of expressive display, the auditory and visual modalities were differentially salient in ways that appear consistent with the ethological importance of that display's social function.
Address Division of Psychobiology, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, GA 30329, Atlanta, USA. parr@rmy.emory.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:14997361 Approved no
Call Number Equine Behaviour @ team @ Serial 2544
Permanent link to this record
 

 
Author Merchant, H.; Fortes, A.F.; Georgopoulos, A.P.
Title Short-term memory effects on the representation of two-dimensional space in the rhesus monkey Type Journal Article
Year 2004 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 7 Issue 3 Pages 133-143
Keywords Analysis of Variance; Animals; Discrimination Learning/*physiology; Macaca mulatta; Male; Memory, Short-Term/*physiology; Mental Processes/*physiology; Pattern Recognition, Visual/*physiology; Space Perception/*physiology
Abstract Human subjects represent the location of a point in 2D space using two independent dimensions (x-y in Euclidean or radius-angle in polar space), and encode location in memory along these dimensions using two levels of representation: a fine-grain value and a category. Here we determined whether monkeys possessed the ability to represent location with these two levels of coding. A rhesus monkey was trained to reproduce the location of a dot in a circle by pointing, after a delay period, on the location where a dot was presented. Five different delay periods (0.5-5 s) were used. The results showed that the monkey used a polar coordinate system to represent the fine-grain spatial coding, where the radius and angle of the dots were encoded independently. The variability of the spatial response and reaction time increased with longer delays. Furthermore, the animal was able to form a categorical representation of space that was delay-dependent. The responses avoided the circumference and the center of the circle, defining a categorical radial prototype around one third of the total radial length. This radial category was observed only at delay durations of 3-5 s. Finally, the monkey also formed angular categories with prototypes at the obliques of the quadrants of the circle, avoiding the horizontal and vertical axes. However, these prototypes were only observed at the 5-s delay and on dots lying on the circumference. These results indicate that monkeys may possess spatial cognitive abilities similar to humans.
Address Brain Sciences Center (11B), Veterans Affairs Medical Center, One Veterans Drive, MN 55417, Minneapolis, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:14669074 Approved no
Call Number Equine Behaviour @ team @ Serial 2548
Permanent link to this record