toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Brubaker, L.; Udell, M.A.R. url  doi
openurl 
  Title (up) Cognition and learning in horses (Equus caballus): What we know and why we should ask more Type Journal Article
  Year 2016 Publication Behavioural Processes Abbreviated Journal  
  Volume 126 Issue Pages 121-131  
  Keywords Horse behaviour; Horse welfare; Learning; Social cognition  
  Abstract Abstract Horses (Equus caballus) have a rich history in their relationship with humans. Across different cultures and eras they have been utilized for work, show, cultural rituals, consumption, therapy, and companionship and continue to serve in many of these roles today. As one of the most commonly trained domestic animals, understanding how horses learn and how their relationship with humans and other horses impacts their ability to learn has implications for horse welfare, training, husbandry and management. Given that unlike dogs and cats, domesticated horses have evolved from prey animals, the horse-human relationship poses interesting and unique scientific questions of theoretical value. There is still much to be learned about the cognition and behaviour of horses from a scientific perspective. This review explores current research within three related areas of horse cognition: human-horse interactions, social learning and independent learning in horses. Research on these topics is summarized and suggestions for future research are provided.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6021  
Permanent link to this record
 

 
Author McLean, A.N. url  openurl
  Title (up) Cognitive abilities -- the result of selective pressures on food acquisition? Type Journal Article
  Year 2001 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 71 Issue 3 Pages 241-258  
  Keywords Adaptive intelligence; Animal cognition; Darwinian selection; Insightful learning  
  Abstract Locating and capturing food are suggested as significant selection pressures for the evolution of various cognitive abilities in mammals and birds. The hypothesis is proposed that aspects of food procuring behaviour should be strongly indicative of particular cognitive abilities. Experimental data concerning higher mental abilities in mammals and birds are reviewed. These data deal with self-recognition studies, rule-learning experiments, number concept, deceptive abilities, tool-use and observational learning. A Darwinian approach reveals: (1) the adaptiveness of particular abilities for particular niches, (2) that in complex foraging environments, increases in foraging efficiencies in animals should result from the evolution of particular cognitive abilities, (3) that phenomena such as convergent mental evolution should be expected to have taken place across taxonomic groups for species exploiting similar niches, (4) that divergence in mental ability should also have taken place where related species have exploited dissimilar niches. Experimental data of higher mental abilities in animals concur with a Darwinian explanation for the distribution of these cognitive abilities and no anomalies have been found. There are, as a consequence, significant implications for the welfare of animals subject to training when training methodology gives little or no consideration to the various mental abilities of species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 2907  
Permanent link to this record
 

 
Author Hayashi, M.; Matsuzawa, T. doi  openurl
  Title (up) Cognitive development in object manipulation by infant chimpanzees Type Journal Article
  Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 6 Issue 4 Pages 225-233  
  Keywords Age Factors; Animals; Child Development/physiology; Child, Preschool; Cognition/*physiology; Female; Growth; Humans; Imitative Behavior/physiology; Infant; Learning/*physiology; Male; Mothers/*psychology; Motor Skills/*physiology; Pan troglodytes/*growth & development/*psychology; Psychomotor Performance/*physiology; Species Specificity  
  Abstract This study focuses on the development of spontaneous object manipulation in three infant chimpanzees during their first 2 years of life. The three infants were raised by their biological mothers who lived among a group of chimpanzees. A human tester conducted a series of cognitive tests in a triadic situation where mothers collaborated with the researcher during the testing of the infants. Four tasks were presented, taken from normative studies of cognitive development of Japanese infants: inserting objects into corresponding holes in a box, seriating nesting cups, inserting variously shaped objects into corresponding holes in a template, and stacking up wooden blocks. The mothers had already acquired skills to perform these manipulation tasks. The infants were free to observe the mothers' manipulative behavior from immediately after birth. We focused on object-object combinations that were made spontaneously by the infant chimpanzees, without providing food reinforcement for any specific behavior that the infants performed. The three main findings can be summarized as follows. First, there was precocious appearance of object-object combination in infant chimpanzees: the age of onset (8-11 months) was comparable to that in humans (around 10 months old). Second, object-object combinations in chimpanzees remained at a low frequency between 11 and 16 months, then increased dramatically at the age of approximately 1.5 years. At the same time, the accuracy of these object-object combinations also increased. Third, chimpanzee infants showed inserting behavior frequently and from an early age but they did not exhibit stacking behavior during their first 2 years of life, in clear contrast to human data.  
  Address Section of Language and Intelligence, Primate Research Institute, Kyoto University, 41 Kanrin, Inuyama, 484-8506 Aichi, Japan. misato@pri.kyoto-u.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12905079 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2559  
Permanent link to this record
 

 
Author Macphail, E.M. doi  openurl
  Title (up) Cognitive function in mammals: the evolutionary perspective Type Journal Article
  Year 1996 Publication Brain research. Cognitive brain research Abbreviated Journal Brain Res Cogn Brain Res  
  Volume 3 Issue 3-4 Pages 279-290  
  Keywords Animals; Cognition/*physiology; Conditioning (Psychology)/*physiology; Evolution; Humans; Learning/*physiology; Task Performance and Analysis  
  Abstract The work of behavioural pharmacologists has concentrated on small animals, such as rodents and pigeons. The validity of extrapolation of their findings to humans depends upon the existence of parallels in both physiology and psychology between these animals and humans. This paper considers the question whether there are in fact substantial cognitive parallels between, first, different non-human groups of vertebrates and, second, non-humans and humans. Behavioural data from 'simple' tasks, such as habituation and conditioning, do not point to species differences among vertebrates. Using examples that concentrate on the performance of rodents and birds, it is argued that, similarly, data from more complex tasks (learning-set formation, transitive inference, and spatial memory serve as examples) reveal few if any cognitive differences amongst non-human vertebrates. This conclusion supports the notion that association formation may be the critical problem-solving process available to non-human animals; associative mechanisms are assumed to have evolved to detect causal links between events, and would therefore be relevant in all ecological niches. In agreement with this view, recent advances in comparative neurology show striking parallels in functional organisation of mammalian and avian telencephalon. Finally, it is argued that although the peculiarly human capacity for language marks a large cognitive contrast between humans and non-humans, there is good evidence-in particular, from work on implicit learning--that the learning mechanisms available to non--humans are present and do play an important role in human cognition.  
  Address Department of Psychology, University of York at Heslington, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-6410 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8806029 Approved no  
  Call Number refbase @ user @ Serial 603  
Permanent link to this record
 

 
Author Subiaul, F.; Cantlon, J.F.; Holloway, R.L.; Terrace, H.S. doi  openurl
  Title (up) Cognitive imitation in rhesus macaques Type Journal Article
  Year 2004 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 305 Issue 5682 Pages 407-410  
  Keywords Animals; *Cognition; *Imitative Behavior; *Learning; Macaca mulatta/*physiology/psychology; Male  
  Abstract Experiments on imitation typically evaluate a student's ability to copy some feature of an expert's motor behavior. Here, we describe a type of observational learning in which a student copies a cognitive rule rather than a specific motor action. Two rhesus macaques were trained to respond, in a prescribed order, to different sets of photographs that were displayed on a touch-sensitive monitor. Because the position of the photographs varied randomly from trial to trial, sequences could not be learned by motor imitation. Both monkeys learned new sequences more rapidly after observing an expert execute those sequences than when they had to learn new sequences entirely by trial and error.  
  Address Department of Anthropology, Columbia University, New York, NY 10027, USA. subiaul@aol.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1095-9203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15256673 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2839  
Permanent link to this record
 

 
Author Acuna, B.D.; Sanes, J.N.; Donoghue, J.P. doi  openurl
  Title (up) Cognitive mechanisms of transitive inference Type Journal Article
  Year 2002 Publication Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale Abbreviated Journal Exp Brain Res  
  Volume 146 Issue 1 Pages 1-10  
  Keywords Adolescent; Adult; Attention/*physiology; Cognition/*physiology; Female; Humans; Learning/physiology; Linear Models; Male; Photic Stimulation; Psychomotor Performance/physiology; Reaction Time/physiology  
  Abstract We examined how the brain organizes interrelated facts during learning and how the facts are subsequently manipulated in a transitive inference (TI) paradigm (e.g., if A<B and B<C, then A<C). This task determined features such as learned facts and behavioral goals, but the learned facts could be organized in any of several ways. For example, if one learns a list by operating on paired items, the pairs may be stored individually as separate facts and reaction time (RT) should decrease with learning. Alternatively, the pairs may be stored as a single, unified list, which may yield a different RT pattern. We characterized RT patterns that occurred as participants learned, by trial and error, the predetermined order of 11 shapes. The task goal was to choose the shape occurring closer to the end of the list, and feedback about correctness was provided during this phase. RT increased even as its variance decreased during learning, suggesting that the learnt knowledge became progressively unified into a single representation, requiring more time to manipulate as participants acquired relational knowledge. After learning, non-adjacent (NA) list items were presented to examine how participants reasoned in a TI task. The task goal also required choosing from each presented pair the item occurring closer to the list end, but without feedback. Participants could solve the TI problems by applying formal logic to the previously learnt pairs of adjacent items; alternatively, they could manipulate a single, unified representation of the list. Shorter RT occurred for NA pairs having more intervening items, supporting the hypothesis that humans employ unified mental representations during TI. The response pattern does not support mental logic solutions of applying inference rules sequentially, which would predict longer RT with more intervening items. We conclude that the brain organizes information in such a way that reflects the relations among the items, even if the facts were learned in an arbitrary order, and that this representation is subsequently used to make inferences.  
  Address Department of Neuroscience, Box 1953, Brown Medical School, Providence, RI 02912, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-4819 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12192572 Approved no  
  Call Number refbase @ user @ Serial 602  
Permanent link to this record
 

 
Author Gabor, V.; Gerken, M. pdf  openurl
  Title (up) Cognitive testing in Shetland ponies (Equus caballus) using a computer based learning device Type Conference Article
  Year 2012 Publication Proceedings of the 2. International Equine Science Meeting Abbreviated Journal Proc. 2. Int. Equine. Sci. Mtg  
  Volume in press Issue Pages  
  Keywords Shetland ponies, Cognitive abilities, Concept learning, Concept of sameness  
  Abstract Complex housing environments such as group housing with automatic feeding or the close contact to humans in sports make high demands on the learning ability of the horse. These learning processes include not only habituation, sensitization and simpler forms of operant conditioning, but also stimulus generalization and possibly some type of concept learning. Studies concerning cognitive abilities in the horse increased in the last decades, but for optimizing housing conditions and horse training, deeper insight into the learning behaviour of this species is necessary. In the present study we used the advantages of a computer based learning device to train 7 Shetland ponies to solve a matching to sample task. With this more complex type of a discrimination task, animals are trained to recognize two out of three presented stimuli as identical. In a first step animals learned to operate the learning device and in further learning steps to recognize and assign geometric symbols (dot, cross, square, and triangle) presented on a LCD screen that were ‘equal’. Four of the 7 ponies could solve the given task by performing over 80% correct responses in two consecutive sessions (p < 0.001). In the subsequent transfer test with new symbols, we found that the ponies were able to transfer the learned rule. In further experiments it should be clarified whether the good learning performance of the ponies in the present study is indeed based on their capability to form an abstract concept of sameness. The present results indicate that ponies possibly posses higher cognitive abilities than so far known.  
  Address  
  Corporate Author Gabor, V. Thesis  
  Publisher Xenophon Publishing Place of Publication Wald Editor Krueger, K.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-3-9808134-26 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5537  
Permanent link to this record
 

 
Author Hanggi, E.B.; Ingersoll, J.F.; Waggoner, T.L. doi  openurl
  Title (up) Color vision in horses (Equus caballus): deficiencies identified using a pseudoisochromatic plate test Type Journal Article
  Year 2007 Publication Journal of Comparative Psychology Abbreviated Journal J. Comp. Psychol.  
  Volume 121 Issue 1 Pages 65-72  
  Keywords Animals; Appetitive Behavior; *Color Perception; Color Perception Tests/veterinary; *Discrimination Learning; Female; Horses/*psychology; Male; Sensitivity and Specificity  
  Abstract In the past, equine color vision was tested with stimuli composed either of painted cards or photographic slides or through physiological testing using electroretinogram flicker photometry. Some studies produced similar results, but others did not, demonstrating that there was not yet a definitive answer regarding color vision in horses (Equus caballus). In this study, a pseudoisochromatic plate test--which is highly effective in testing color vision both in small children and in adult humans--was used for the first time on a nonhuman animal. Stimuli consisted of different colored dotted circles set against backgrounds of varying dots. The coloration of the circles corresponded to the visual capabilities of different types of color deficiencies (anomalous trichromacy and dichromacy). Four horses were tested on a 2-choice discrimination task. All horses successfully reached criterion for gray circles and demonstration circles. None of the horses were able to discriminate the protan-deutan plate or the individual protan or deutan plates. However, all were able to discriminate the tritan plate. The results suggest that horses are dichromats with color vision capabilities similar to those of humans with red-green color deficiencies.  
  Address Equine Research Foundation, Aptos, CA 95001, USA. EquiResF@aol.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7036 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17324076 Approved no  
  Call Number refbase @ user @ ; Equine Behaviour @ team @ room B 3.029 Serial 1972  
Permanent link to this record
 

 
Author Fortes, A.F.; Merchant, H.; Georgopoulos, A.P. doi  openurl
  Title (up) Comparative and categorical spatial judgments in the monkey: “high” and “low” Type Journal Article
  Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 7 Issue 2 Pages 101-108  
  Keywords Animals; *Classification; Cognition; *Discrimination Learning; Form Perception; Macaca mulatta/*parasitology; Male; *Pattern Recognition, Visual; Semantics; *Space Perception  
  Abstract Adult human subjects can classify the height of an object as belonging to either of the “high” or “low” categories by utilizing an abstract concept of midline that divides the vertical dimension into two halves. Children lack this abstract concept of midline, do not have a sense that these categories are directional opposites, and their categorical and comparative usages of high(er) or low(er) are restricted to the corresponding poles. We investigated the abilities of a rhesus monkey to perform categorical judgments in space. We were also interested in the presence of the congruity effect (a decrease in response time when the objects compared are closer to the category pole) in the monkey. The presence of this phenomenon in the monkey would allow us to relate the behavior of the animal to the two major competing hypotheses that have been suggested to explain the congruity effect in humans: the analog and semantic models. The monkey was trained in delayed match-to-sample tasks in which it had to categorize objects as belonging to either a high or low category. The monkey was able to generate an abstract notion of midline in a fashion similar to that of adult human subjects. The congruity effect was also present in the monkey. These findings, taken together with the notion that monkeys are not considered to think in propositional terms, may favor an analog comparison model in the monkey.  
  Address Brain Sciences Center, Veterans Affairs Medical Center, One Veterans Drive, Minneapolis, MN 55417, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15069609 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2531  
Permanent link to this record
 

 
Author Cooper, J.J. openurl 
  Title (up) Comparative learning theory and its application in the training of horses Type Journal Article
  Year 1998 Publication Equine veterinary journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 27 Pages 39-43  
  Keywords Animals; *Behavior, Animal; Conditioning (Psychology); Horses/*psychology; *Learning; Reinforcement (Psychology)  
  Abstract Training can best be explained as a process that occurs through stimulus-response-reinforcement chains, whereby animals are conditioned to associate cues in their environment, with specific behavioural responses and their rewarding consequences. Research into learning in horses has concentrated on their powers of discrimination and on primary positive reinforcement schedules, where the correct response is paired with a desirable consequence such as food. In contrast, a number of other learning processes that are used in training have been widely studied in other species, but have received little scientific investigation in the horse. These include: negative reinforcement, where performance of the correct response is followed by removal of, or decrease in, intensity of a unpleasant stimulus; punishment, where an incorrect response is paired with an undesirable consequence, but without consistent prior warning; secondary conditioning, where a natural primary reinforcer such as food is closely associated with an arbitrary secondary reinforcer such as vocal praise; and variable or partial conditioning, where once the correct response has been learnt, reinforcement is presented according to an intermittent schedule to increase resistance to extinction outside of training.  
  Address Department of Zoology, University of Oxford, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10485003 Approved no  
  Call Number refbase @ user @ Serial 846  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print