|   | 
Details
   web
Record
Author Permyakov, S.E.; Khokhlova, T.I.; Nazipova, A.A.; Zhadan, A.P.; Morozova-Roche, L.A.; Permyakov, E.A.
Title Calcium-binding and temperature induced transitions in equine lysozyme: new insights from the pCa-temperature “phase diagrams” Type Journal Article
Year 2006 Publication Proteins Abbreviated Journal Proteins
Volume 65 Issue 4 Pages 984-998
Keywords Animals; Apoproteins/chemistry/metabolism; Binding Sites; Calcium/chemistry/*metabolism; Cattle; Edetic Acid/metabolism; Horses/metabolism; Hydrogen-Ion Concentration; Lactalbumin/chemistry/metabolism; Muramidase/*chemistry/*metabolism; Protein Denaturation; Spectrometry, Fluorescence; *Temperature; Thermodynamics; Tryptophan/chemistry/metabolism
Abstract The most universal approach to the studies of metal binding properties of single-site metal binding proteins, i.e., construction of a “phase diagram” in coordinates of free metal ion concentration-temperature, has been applied to equine lysozyme (EQL). EQL has one relatively strong calcium binding site and shows two thermal transitions, but only one of them is Ca(2+)-dependent. It has been found that the Ca(2+)-dependent behavior of the low temperature thermal transition (I) of EQL can be adequately described based upon the simplest four-states scheme of metal- and temperature-induced structural changes in a protein. All thermodynamic parameters of this scheme were determined experimentally and used for construction of the EQL phase diagram in the pCa-temperature space. Comparison of the phase diagram with that for alpha-lactalbumin (alpha-LA), a close homologue of lysozyme, allows visualization of the differences in thermodynamic behavior of the two proteins. The thermal stability of apo-EQL (transition I) closely resembles that for apo-alpha-LA (mid-temperature 25 degrees C), while the thermal stabilities of their Ca(2+)-bound forms are almost indistinguishable. The native state of EQL has three orders of magnitude lower affinity for Ca(2+) in comparison with alpha-LA while its thermally unfolded state (after the I transition) has about one order lower (K = 15M(-1)) affinity for calcium. Circular dichroism studies of the apo-lysozyme state after the first thermal transition show that it shares common features with the molten globule state of alpha-LA.
Address Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1097-0134 ISBN Medium
Area Expedition Conference
Notes PMID:17022083 Approved no
Call Number Serial 1858
Permanent link to this record