toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Andersson, P.; Kvassman, J.; Lindstrom, A.; Olden, B.; Pettersson, G. openurl 
  Title Effect of NADH on the pKa of zinc-bound water in liver alcohol dehydrogenase Type Journal Article
  Year 1981 Publication (up) European Journal of Biochemistry / FEBS Abbreviated Journal Eur J Biochem  
  Volume 113 Issue 3 Pages 425-433  
  Keywords Alcohol Oxidoreductases/*metabolism; Aldehydes/metabolism; Animals; Binding Sites; Cinnamates/metabolism; Horses; Hydrogen-Ion Concentration; Kinetics; Ligands; Liver/*metabolism; NAD/*metabolism; Water/metabolism; Zinc/metabolism  
  Abstract Equilibrium constants for coenzyme binding to liver alcohol dehydrogenase have been determined over the pH range 10--12 by pH-jump stop-flow techniques. The binding of NADH or NAD+ requires the protonated form of an ionizing group (distinct from zinc-bound water) with a pKa of 10.4. Complex formation with NADH exhibits an additional dependence on the protonation state of an ionizing group with a pKa of 11.2. The binding of trans-N,N-dimethylaminocinnamaldehyde to the enzyme . NADH complex is prevented by ionization of the latter group. It is concluded from these results that the pKa-11.2-dependence of NADH binding most likely derives from ionization of the water molecule bound at the catalytic zinc ion of the enzyme subunit. The pKa value of 11.2 thus assigned to zinc-bound water in the enzyme . NADH complex appears to be typical for an aquo ligand in the inner-sphere ligand field provided by the zinc-binding amino acid residues in liver alcohol dehydrogenase. This means that the pKa of metal-bound water in zinc-containing enzymes can be assumed to correlate primarily with the number of negatively charged protein ligands coordinated by the active-site zinc ion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:7011796 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3810  
Permanent link to this record
 

 
Author Wilson, M.T.; Ranson, R.J.; Masiakowski, P.; Czarnecka, E.; Brunori, M. openurl 
  Title A kinetic study of the pH-dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase) Type Journal Article
  Year 1977 Publication (up) European Journal of Biochemistry / FEBS Abbreviated Journal Eur J Biochem  
  Volume 77 Issue 1 Pages 193-199  
  Keywords Animals; Cyanides; *Cytochrome c Group/metabolism; Ferric Compounds; Horses; Hydrogen-Ion Concentration; Imidazoles; Kinetics; Mathematics; Myocardium/enzymology; *Oligopeptides/metabolism; *Peptide Fragments/metabolism; Protein Binding; Spectrophotometry; Temperature  
  Abstract The ferric form of the haem undecapeptide, derived from horse cytochrome c by peptic digestion, undergoes at least three pH-induced transitions with pK values of 3.4, 5.8 and 7.6. Temperature-jump experiments suggest that the first of these is due to the binding of a deprotonated imidazole group to the feric iron while the second and third arise from the binding of the two available amino groups present (the alpha-NH2 of valine and the epsilon-NH2 of lysine). Molecular models indicate that steric retraints on the peptide dictate that these amino groups may only coordinate to iron atoms via intermolecular bonds, thus leading to the polymerization of the peptide. Cyanide binding studies are in agreement with these conclusions and also yield a value of 3.6 X 10(6) M-1 s-1 for the intrinsic combination constant of CN- anion with the haem. A model is proposed which describes the pH-dependent properties of the ferric undecapeptide.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20304 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3814  
Permanent link to this record
 

 
Author Touma, C.; Sachser, N.; Mostl, E.; Palme, R. openurl 
  Title Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice Type Journal Article
  Year 2003 Publication (up) General and Comparative Endocrinology Abbreviated Journal Gen Comp Endocrinol  
  Volume 130 Issue 3 Pages 267-278  
  Keywords Animals; Chromatography, High Pressure Liquid; Circadian Rhythm/*physiology; Corticosterone/*metabolism/urine; Feces/*chemistry; Female; Immunoenzyme Techniques; Kinetics; Male; Mice; Mice, Inbred C57BL; Reference Values; Sex Factors; Stress/metabolism; Time Factors; Tritium  
  Abstract Non-invasive techniques to monitor stress hormones in small animals like mice offer several advantages and are highly demanded in laboratory as well as in field research. Since knowledge about the species-specific metabolism and excretion of glucocorticoids is essential to develop such a technique, we conducted radiometabolism studies in mice (Mus musculus f. domesticus, strain C57BL/6J). Each mouse was injected intraperitoneally with 740 kBq of 3H-labelled corticosterone and all voided urine and fecal samples were collected for five days. In a first experiment 16 animals (eight of each sex) received the injection at 9 a.m., while eight mice (four of each sex) were injected at 9 p.m. in a second experiment. In both experiments radioactive metabolites were recovered predominantly in the feces, although males excreted significantly higher proportions via the feces (about 73%) than females (about 53%). Peak radioactivity in the urine was detected within about 2h after injection, while in the feces peak concentrations were observed later (depending on the time of injection: about 10h postinjection in experiment 1 and about 4h postinjection in experiment 2, thus proving an effect of the time of day). The number and relative abundance of fecal [3H]corticosterone metabolites was determined by high performance liquid chromatography (HPLC). The HPLC separations revealed that corticosterone was extensively metabolized mainly to more polar substances. Regarding the types of metabolites formed, significant differences were found between males and females, but not between the experiments. Additionally, the immunoreactivity of these metabolites was assessed by screening the HPLC fractions with four enzyme immunoassays (EIA). However, only a newly established EIA for 5alpha-pregnane-3beta,11beta,21-triol-20-one (measuring corticosterone metabolites with a 5alpha-3beta,11beta-diol structure) detected several peaks of radioactive metabolites with high intensity in both sexes, while the other EIAs showed only minor immunoreactivity. Thus, our study for the first time provides substantial information about metabolism and excretion of corticosterone in urine and feces of mice and is the first demonstrating a significant impact of the animals' sex and the time of day. Based on these data it should be possible to monitor adrenocortical activity non-invasively in this species by measuring fecal corticosterone metabolites with the newly developed EIA. Since mice are extensively used in research world-wide, this could open new perspectives in various fields from ecology to behavioral endocrinology.  
  Address Department of Behavioral Biology, Institute of Neuro and Behavioral Biology, University of Muenster, Badestrasse 9, D-48149 Muenster, Germany. touma@uni-muenster.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-6480 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12606269 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4086  
Permanent link to this record
 

 
Author Saigo, S. openurl 
  Title A transient spin-state change during alkaline isomerization of ferricytochrome c Type Journal Article
  Year 1981 Publication (up) Journal of Biochemistry Abbreviated Journal J Biochem (Tokyo)  
  Volume 89 Issue 6 Pages 1977-1980  
  Keywords Animals; *Cytochrome c Group; Horses; Hydrogen-Ion Concentration; Isomerism; Kinetics; Myocardium/enzymology; Oxidation-Reduction; Spectrophotometry  
  Abstract Kinetic difference spectra during the alkaline isomerization of ferricytochrome c were obtained by the pH-jump method in the range of 540 to 655 nm. The spectrum of the transient intermediate, which appears during the course of the isomerization, was reproduced from the spectra. The intermediate showed an intense absorption band at 600 nm, indicating that it is a high spin or mixed spin species. This is in contrast to the stable neutral and alkaline forms which are low spin species. The transient spin-state change during the isomerization was also observed upon rapid oxidation of ferrocytochrome c at alkaline pH.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-924X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:6270075 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3808  
Permanent link to this record
 

 
Author Wilson, M.T.; Silvestrini, M.C.; Morpurgo, L.; Brunori, M. openurl 
  Title Electron transfer kinetics between Rhus vernicifera stellacyanin and cytochrome c (horse heart cytochrome c and Pseudomonas cytochrome c551) Type Journal Article
  Year 1979 Publication (up) Journal of Inorganic Biochemistry Abbreviated Journal J Inorg Biochem  
  Volume 11 Issue 2 Pages 95-100  
  Keywords Animals; Copper; Cytochrome c Group/*metabolism; Electron Transport; Kinetics; Metalloproteins/*metabolism; Plant Proteins/*metabolism; *Plants, Toxic; Pseudomonas aeruginosa/*metabolism; Toxicodendron/*metabolism  
  Abstract The electron transfer reactions between Rhus vernicifera stellacyanin and either horse heart cytochrome c or Pseudomonas aeruginosa cytochrome c551 were investigated by rapid reaction techniques. The time course of electron transfer is monophasic under all conditions, and thus consistent with a simple formulation of the reaction. Both stopped-flow and temperature-jump experiments yield equilibrium constants in reasonable agreement with values calculated from the redox potentials. The differences in reaction rate between the two cytochromes and stellacyanin are discussed in terms of the Marcus theory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-0134 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:228006 Approved no  
  Call Number refbase @ user @ Serial 3879  
Permanent link to this record
 

 
Author Hoang, L.; Maity, H.; Krishna, M.M.G.; Lin, Y.; Englander, S.W. openurl 
  Title Folding units govern the cytochrome c alkaline transition Type Journal Article
  Year 2003 Publication (up) Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 331 Issue 1 Pages 37-43  
  Keywords Animals; Cytochrome c Group/*chemistry; Horses; Hydrogen/chemistry; Hydrogen-Ion Concentration; Kinetics; Models, Molecular; *Protein Folding; Protein Structure, Tertiary; Spectrum Analysis; Titrimetry  
  Abstract The alkaline transition of cytochrome c is a model for protein structural switching in which the normal heme ligand is replaced by another group. Stopped flow data following a jump to high pH detect two slow kinetic phases, suggesting two rate-limiting structure changes. Results described here indicate that these events are controlled by the same structural unfolding reactions that account for the first two steps in the reversible unfolding pathway of cytochrome c. These and other results show that the cooperative folding-unfolding behavior of protein foldons can account for a variety of functional activities in addition to determining folding pathways.  
  Address Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA. lhoang@mail.upenn.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12875834 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3781  
Permanent link to this record
 

 
Author Hagen, S.J.; Eaton, W.A. doi  openurl
  Title Two-state expansion and collapse of a polypeptide Type Journal Article
  Year 2000 Publication (up) Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 301 Issue 4 Pages 1019-1027  
  Keywords Animals; Computer Simulation; Cytochrome c Group/*chemistry/*metabolism; Horses; Kinetics; Lasers; Models, Chemical; Peptides/*chemistry/*metabolism; Protein Conformation; Protein Denaturation; *Protein Folding; Spectrometry, Fluorescence; Temperature; Thermodynamics  
  Abstract The initial phase of folding for many proteins is presumed to be the collapse of the polypeptide chain from expanded to compact, but still denatured, conformations. Theory and simulations suggest that this collapse may be a two-state transition, characterized by barrier-crossing kinetics, while the collapse of homopolymers is continuous and multi-phasic. We have used a laser temperature-jump with fluorescence spectroscopy to measure the complete time-course of the collapse of denatured cytochrome c with nanosecond time resolution. We find the process to be exponential in time and thermally activated, with an apparent activation energy approximately 9 k(B)T (after correction for solvent viscosity). These results indicate that polypeptide collapse is kinetically a two-state transition. Because of the observed free energy barrier, the time scale of polypeptide collapse is dramatically slower than is predicted by Langevin models for homopolymer collapse.  
  Address Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Building 5, Bethesda, MD, 20892-0520, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10966803 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3790  
Permanent link to this record
 

 
Author Pierce, M.M.; Nall, B.T. doi  openurl
  Title Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization Type Journal Article
  Year 2000 Publication (up) Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 298 Issue 5 Pages 955-969  
  Keywords Amino Acid Sequence; Amino Acid Substitution/genetics; Binding Sites; Cytochrome c Group/*chemistry/genetics/*metabolism; *Cytochromes c; Enzyme Stability/drug effects; Fluorescence; Guanidine/pharmacology; Heme/*metabolism; Histidine/genetics/*metabolism; Hydrogen-Ion Concentration; Isomerism; Kinetics; Models, Molecular; Molecular Sequence Data; Mutation/genetics; Proline/*chemistry/metabolism; Protein Conformation/drug effects; Protein Denaturation/drug effects; *Protein Folding; Protein Renaturation; Saccharomyces cerevisiae/enzymology/genetics; Sequence Alignment; Thermodynamics  
  Abstract The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.  
  Address Center for Biomolecular Structure, Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10801361 Approved no  
  Call Number refbase @ user @ Serial 3853  
Permanent link to this record
 

 
Author Abbruzzetti, S.; Viappiani, C.; Small, J.R.; Libertini, L.J.; Small, E.W. openurl 
  Title Kinetics of histidine deligation from the heme in GuHCl-unfolded Fe(III) cytochrome C studied by a laser-induced pH-jump technique Type Journal Article
  Year 2001 Publication (up) Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 123 Issue 27 Pages 6649-6653  
  Keywords Animals; *Bacterial Proteins; Cytochrome c Group/*chemistry; Guanidine/*chemistry; Heme/*chemistry; Histidine/*chemistry; Horses; Hydrogen-Ion Concentration; Kinetics; *Lasers; Ligands; Protein Folding  
  Abstract We have developed an instrumental setup that uses transient absorption to monitor protein folding/unfolding processes following a laser-induced, ultrafast release of protons from o-nitrobenzaldehyde. The resulting increase in [H(+)], which can be more than 100 microM, is complete within a few nanoseconds. The increase in [H(+)] lowers the pH of the solution from neutrality to approximately 4 at the highest laser pulse energy used. Protein structural rearrangements can be followed by transient absorption, with kinetic monitoring over a broad time range (approximately 10 ns to 500 ms). Using this pH-jump/transient absorption technique, we have examined the dissociation kinetics of non-native axial heme ligands (either histidine His26 or His33) in GuHCl-unfolded Fe(III) cytochrome c (cyt c). Deligation of the non-native ligands following the acidic pH-jump occurs as a biexponential process with different pre-exponential factors. The pre-exponential factors markedly depend on the extent of the pH-jump, as expected from differences in the pK(a) values of His26 and His33. The two lifetimes were found to depend on temperature but were not functions of either the magnitude of the pH-jump or the pre-pulse pH of the solution. The activation energies of the deligation processes support the suggestion that GuHCl-unfolded cyt c structures with non-native histidine axial ligands represent kinetic traps in unfolding.  
  Address Dipartimento di Fisica, Universita di Parma, Istituto Nazionale per la Fisica della Materia, 43100 Parma, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11439052 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3788  
Permanent link to this record
 

 
Author Machnik, M.; Hegger, I.; Kietzmann, M.; Thevis, M.; Guddat, S.; Schanzer, W. doi  openurl
  Title Pharmacokinetics of altrenogest in horses Type Journal Article
  Year 2007 Publication (up) Journal of Veterinary Pharmacology and Therapeutics Abbreviated Journal J Vet Pharmacol Ther  
  Volume 30 Issue 1 Pages 86-90  
  Keywords Administration, Oral; Animals; Chromatography, Liquid/veterinary; Doping in Sports/prevention & control; Horses/*metabolism; Male; Mass Spectrometry/veterinary; Progesterone Congeners/administration & dosage/blood/*pharmacokinetics/urine; Reproducibility of Results; Substance Abuse Detection/veterinary; Trenbolone/administration & dosage/*analogs & derivatives/blood/pharmacokinetics/urine  
  Abstract The Federation Equestre Internationale has permitted the use of altrenogest in mares for the control of oestrus. However, altrenogest is also suspicious to misuse in competition horses for its potential anabolic effects and suppression of typical male behaviour, and thus is a controlled drug. To investigate the pharmacokinetics of altrenogest in horses we conducted an elimination study. Five oral doses of 44 mug/kg altrenogest were administered to 10 horses at a dose interval of 24 h. Following administration blood and urine samples were collected at appropriate intervals. Altrenogest concentrations were measured by liquid chromatography-tandem mass spectrometry. The plasma levels of altrenogest reached maximal concentrations of 23-75 ng/mL. Baseline values were achieved within 3 days after the final administration. Urine peak concentrations of total altrenogest ranged from 823 to 3895 ng/mL. Twelve days after the final administration concentrations were below the limit of detection (ca 2 ng/mL).  
  Address Institute of Biochemistry, German Sport University, Cologne, Germany. m.machnik@biochem.dshs-koeln.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-7783 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17217407 Approved no  
  Call Number Serial 1841  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print