toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Saigo, S. openurl 
  Title Kinetic and equilibrium studies of alkaline isomerization of vertebrate cytochromes c Type Journal Article
  Year (up) 1981 Publication Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta  
  Volume 669 Issue 1 Pages 13-20  
  Keywords Amino Acid Sequence; Animals; Cytochrome c Group/*metabolism; Dogs; Hydrogen-Ion Concentration; Isomerism; Kinetics; Vertebrates/metabolism  
  Abstract Equilibria and kinetics of alkaline isomerization of seven ferricytochromes c from vertebrates were studied by pH-titration and pH-jump methods in the pH region of 7-12. In the equilibrium behavior, no significant difference was detected among the cytochromes c, whereas marked differences in the kinetic behavior were observed. According to the kinetic behavior of the isomerization, the cytochromes c examined fall into three classes: Group I (horse, sheep, dog and pigeon cytochromes c), Group II (tuna and bonito cytochromes c) and Group III (rhesus monkey cytochrome c). The kinetic results are interpreted in terms of the sequential scheme: Neutral form in equilibrium with fast Transient form in equilibrium with slow Alkaline form where the neutral and alkaline forms are the species stable at neutral and alkaline pH, respectively, and the transient form is a kinetic intermediate. From comparison of the primary sequences of the seven cytochromes c and the classification of these cytochromes c, it is concluded that the amino acid substitution Phe/Tyr at the 46-th position has a major influence on the kinetic behavior. In Group II and III cytochromes c, the ionization of Tyr-46 is suggested to bring about loosening of the heme crevice and thus facilitate the ligand replacement involved in the isomerization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3002 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:6271238 Approved no  
  Call Number refbase @ user @ Serial 3871  
Permanent link to this record
 

 
Author Dyson, H.J.; Beattie, J.K. openurl 
  Title Spin state and unfolding equilibria of ferricytochrome c in acidic solutions Type Journal Article
  Year (up) 1982 Publication The Journal of Biological Chemistry Abbreviated Journal J Biol Chem  
  Volume 257 Issue 5 Pages 2267-2273  
  Keywords Animals; *Cytochrome c Group; Electron Spin Resonance Spectroscopy; Heme; Horses; Hydrogen-Ion Concentration; Kinetics; Ligands; Myocardium; Protein Binding; Protein Conformation; Spectrophotometry; Temperature  
  Abstract Equilibrium, stopped flow, and temperature-jump spectrophotometry have been used to identify processes in the unfolding of ferricytochrome c in acidic aqueous solutions. A relaxation occurring in approximately 100 microseconds involves perturbation of a spin-equilibrium between two folded conformers of the protein with methionine-80 coordinated or dissociated from the heme iron. The protein unfolds more slowly, in milliseconds, with dissociation and protonation of histidine-18. These two transitions appear cooperative in equilibrium measurements at low (0.01 M) ionic strength, but are separated at higher (0.10 M) ionic strength. They are resolved under both conditions in the dynamic measurements. The spin-equilibrium description permits a unified explanation of a number of properties of ferricytochrome c in acidic aqueous solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9258 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:6277891 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3807  
Permanent link to this record
 

 
Author Hughes, K.L.; Sulaiman, I. openurl 
  Title The ecology of Rhodococcus equi and physicochemical influences on growth Type Journal Article
  Year (up) 1987 Publication Veterinary Microbiology Abbreviated Journal Vet Microbiol  
  Volume 14 Issue 3 Pages 241-250  
  Keywords Animals; Feces/microbiology; Horses; Hydrogen-Ion Concentration; Rhodococcus/*growth & development; *Soil Microbiology; Temperature  
  Abstract Growth of Rhodococcus equi was studied in vitro. Optimal growth occurred under aerobic conditions between pH 7.0 and 8.5, at 30 degrees C. R. equi survived better in a neutral soil (pH 7.3) than it did in two acid soils (pH less than 5.5). It grew substantially better in soils enriched with faeces than in soils alone. Simple organic acids in horse dung, especially acetate and propionate, appear to be important in supporting growth of R. equi in the environment. The ecology of R. equi can be best explained by an environmental cycle allowing its proliferation in dung, influenced by management, grazing behaviour and prevailing climatic conditions. Preventive measures should be aimed at reducing or avoiding focal areas of faecal contamination in the environment.  
  Address School of Veterinary Science, University of Melbourne, Parkville, Vic., Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-1135 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:3672866 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2678  
Permanent link to this record
 

 
Author Steinhoff, H.J.; Lieutenant, K.; Redhardt, A. openurl 
  Title Conformational transition of aquomethemoglobin: intramolecular histidine E7 binding reaction to the heme iron in the temperature range between 220 K and 295 K as seen by EPR and temperature-jump measurements Type Journal Article
  Year (up) 1989 Publication Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta  
  Volume 996 Issue 1-2 Pages 49-56  
  Keywords Animals; Electron Spin Resonance Spectroscopy; Heme; Histidine; Horses; Humans; Hydrogen-Ion Concentration; Methemoglobin/*ultrastructure; Motion; Protein Conformation; Temperature; Thermodynamics; Water  
  Abstract Temperature-dependent EPR and temperature-jump measurements have been carried out, in order to examine the high-spin to low-spin transition of aquomethemogobin (pH 6.0). Relaxation rates and equilibrium constants could be determined as a function of temperature. As a reaction mechanism for the high-spin to low-spin transition, the binding of N epsilon of His E7 to the heme iron had been proposed; the same mechanism had been suggested for the ms-effect, found in temperature-jump experiments on aquomethemoglobin. A comparison of the thermodynamic quantities, deduced form the measurements in this paper, gives evidence that indeed the same reaction is investigated in both cases. Our results and most of the findings of earlier studies on the spin-state transitions of aquomethemoglobin, using susceptibility, optical, or EPR measurements, can be explained by the transition of methemoglobin with H2O as ligand (with high-spin state at all temperatures) and methemoglobin with ligand N epsilon of His E7 (with a low-spin ground state). Thermal fluctuations of large amplitude have to be postulated for the reaction to take place, so this reaction may be understood as a probe for the study of protein dynamics.  
  Address Institut fur Biophysik, Ruhr-Universitat Bochum, F.R.G  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3002 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:2544230 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3803  
Permanent link to this record
 

 
Author Jablonska, E.M.; Ziolkowska, S.M.; Gill, J.; Szykula, R.; Faff, J. openurl 
  Title Changes in some haematological and metabolic indices in young horses during the first year of jump-training Type Journal Article
  Year (up) 1991 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 23 Issue 4 Pages 309-311  
  Keywords Alanine Transaminase/blood; Animals; Bicarbonates/blood; Blood Glucose/analysis; Blood Proteins/analysis; Breeding; Carbon Dioxide/blood; Exercise Test/veterinary; Fatty Acids, Nonesterified/blood; Female; Fructose-Bisphosphate Aldolase/blood; Hematocrit/veterinary; Hemoglobins/analysis; Horses/*blood/metabolism; Hydrogen-Ion Concentration; Lactates/blood; Male; Oxygen/blood; *Physical Conditioning, Animal; Pyruvates/blood  
  Abstract Effects of an 18 min exercise test, on three separate occasions during a one year jump-training programme, was studied in seven horses. Determinations were carried out on venous blood for packed cell volume, haemoglobin, total protein, lactate and pyruvate, glucose, free fatty acids, insulin, glucagon, blood gases, bicarbonate, pH, aldolase, aspartate aminotransferase and alanine amino-transferase. Exercise caused a slight increase in lactate and pyruvate, total protein, aldolase, alanine aminotransferase, pO2, bicarbonate and pH. Glucose, free fatty acids and pCO2 levels decreased. Training caused no significant difference in these changes. However, during the year, increases in lactate and decreases in pH (resting levels) were observed.  
  Address Department of Vertebrate Animal Physiology, Warszawa, Poland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1915234 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3801  
Permanent link to this record
 

 
Author Hinchcliff, K.W.; Kohn, C.W.; Geor, R.; McCutcheon, L.J.; Foreman, J.; Andrews, F.M.; Allen, A.K.; White, S.L.; Williamson, L.H.; Maykuth, P.L. openurl 
  Title Acid:base and serum biochemistry changes in horses competing at a modified 1 Star 3-day-event Type Journal Article
  Year (up) 1995 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 20 Pages 105-110  
  Keywords *Acid-Base Equilibrium; Animals; Blood Proteins/analysis; Body Water/metabolism; Carbon Dioxide/blood; Electrolytes/*blood; Female; Hematocrit/veterinary; Homeostasis; Horses/*blood/physiology; Hydrogen-Ion Concentration; Male; Physical Conditioning, Animal/*physiology  
  Abstract We examined the effects of participation in each of 3 modifications of Day 2 of a 3-day-event on blood and serum variables indicative of hydration, acid:base status and electrolyte homeostasis of horses. Three groups of horses – 8 European (E) horses and 2 groups each of 9 North American horses performed identical Days 1 (dressage) and 3 (stadium jumping) of a 3-day-event. E horses and one group of the North American horses (TD) performed modifications of Day 2 of a 1 Star 3-day-event and the other group of North American horses (HT) performed a Horse Trial on Day 2. Jugular venous blood was collected from each horse on the morning of Day 2 before any warm-up activity, between 4 min 55 s and 5 min 15 s after Phase D and the following morning. Eight E horses, 5 TD horses and 8 HT horses completed the trials. There were few significant differences in acid:base or serum biochemistry variables detected among horses performing either 2 variations of the Speed and Endurance day of a 1 Star 3-day-event, or a conventional Horse Trial. Failure to detect differences among groups may have been related to the low statistical power associated with the small number of horses, especially in the TD group, variation in quality of horses among groups and the different times of the day at which the E horses competed. Differences detected among time points were usually common to all groups and demonstrated metabolic acidosis with a compensatory respiratory alkalosis, a reduction in total body water and cation content, and hypocalcaemia. Importantly, horses of all groups did not replenish cation, chloride, and calcium deficits after 14-18 h of recovery.  
  Address Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus 43210-1089, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8933092 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3740  
Permanent link to this record
 

 
Author Abbruzzetti, S.; Crema, E.; Masino, L.; Vecli, A.; Viappiani, C.; Small, J.R.; Libertini, L.J.; Small, E.W. openurl 
  Title Fast events in protein folding: structural volume changes accompanying the early events in the N-->I transition of apomyoglobin induced by ultrafast pH jump Type Journal Article
  Year (up) 2000 Publication Biophysical Journal Abbreviated Journal Biophys J  
  Volume 78 Issue 1 Pages 405-415  
  Keywords Animals; Apoproteins/*chemistry; Horses; *Hydrogen-Ion Concentration; Kinetics; Models, Molecular; Myoglobin/*chemistry; Protein Conformation; *Protein Folding; Protein Structure, Secondary; Spectrometry, Fluorescence  
  Abstract Ultrafast, laser-induced pH jump with time-resolved photoacoustic detection has been used to investigate the early protonation steps leading to the formation of the compact acid intermediate (I) of apomyoglobin (ApoMb). When ApoMb is in its native state (N) at pH 7.0, rapid acidification induced by a laser pulse leads to two parallel protonation processes. One reaction can be attributed to the binding of protons to the imidazole rings of His24 and His119. Reaction with imidazole leads to an unusually large contraction of -82 +/- 3 ml/mol, an enthalpy change of 8 +/- 1 kcal/mol, and an apparent bimolecular rate constant of (0.77 +/- 0.03) x 10(10) M(-1) s(-1). Our experiments evidence a rate-limiting step for this process at high ApoMb concentrations, characterized by a value of (0. 60 +/- 0.07) x 10(6) s(-1). The second protonation reaction at pH 7. 0 can be attributed to neutralization of carboxylate groups and is accompanied by an apparent expansion of 3.4 +/- 0.2 ml/mol, occurring with an apparent bimolecular rate constant of (1.25 +/- 0.02) x 10(11) M(-1) s(-1), and a reaction enthalpy of about 2 kcal/mol. The activation energy for the processes associated with the protonation of His24 and His119 is 16.2 +/- 0.9 kcal/mol, whereas that for the neutralization of carboxylates is 9.2 +/- 0.9 kcal/mol. At pH 4.5 ApoMb is in a partially unfolded state (I) and rapid acidification experiments evidence only the process assigned to carboxylate protonation. The unusually large contraction and the high energetic barrier observed at pH 7.0 for the protonation of the His residues suggests that the formation of the compact acid intermediate involves a rate-limiting step after protonation.  
  Address Dipartimento di Fisica, Universita di Parma, 43100 Parma, Italia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3495 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10620304 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3792  
Permanent link to this record
 

 
Author Pierce, M.M.; Nall, B.T. doi  openurl
  Title Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization Type Journal Article
  Year (up) 2000 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 298 Issue 5 Pages 955-969  
  Keywords Amino Acid Sequence; Amino Acid Substitution/genetics; Binding Sites; Cytochrome c Group/*chemistry/genetics/*metabolism; *Cytochromes c; Enzyme Stability/drug effects; Fluorescence; Guanidine/pharmacology; Heme/*metabolism; Histidine/genetics/*metabolism; Hydrogen-Ion Concentration; Isomerism; Kinetics; Models, Molecular; Molecular Sequence Data; Mutation/genetics; Proline/*chemistry/metabolism; Protein Conformation/drug effects; Protein Denaturation/drug effects; *Protein Folding; Protein Renaturation; Saccharomyces cerevisiae/enzymology/genetics; Sequence Alignment; Thermodynamics  
  Abstract The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.  
  Address Center for Biomolecular Structure, Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10801361 Approved no  
  Call Number refbase @ user @ Serial 3853  
Permanent link to this record
 

 
Author Abbruzzetti, S.; Viappiani, C.; Small, J.R.; Libertini, L.J.; Small, E.W. openurl 
  Title Kinetics of histidine deligation from the heme in GuHCl-unfolded Fe(III) cytochrome C studied by a laser-induced pH-jump technique Type Journal Article
  Year (up) 2001 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 123 Issue 27 Pages 6649-6653  
  Keywords Animals; *Bacterial Proteins; Cytochrome c Group/*chemistry; Guanidine/*chemistry; Heme/*chemistry; Histidine/*chemistry; Horses; Hydrogen-Ion Concentration; Kinetics; *Lasers; Ligands; Protein Folding  
  Abstract We have developed an instrumental setup that uses transient absorption to monitor protein folding/unfolding processes following a laser-induced, ultrafast release of protons from o-nitrobenzaldehyde. The resulting increase in [H(+)], which can be more than 100 microM, is complete within a few nanoseconds. The increase in [H(+)] lowers the pH of the solution from neutrality to approximately 4 at the highest laser pulse energy used. Protein structural rearrangements can be followed by transient absorption, with kinetic monitoring over a broad time range (approximately 10 ns to 500 ms). Using this pH-jump/transient absorption technique, we have examined the dissociation kinetics of non-native axial heme ligands (either histidine His26 or His33) in GuHCl-unfolded Fe(III) cytochrome c (cyt c). Deligation of the non-native ligands following the acidic pH-jump occurs as a biexponential process with different pre-exponential factors. The pre-exponential factors markedly depend on the extent of the pH-jump, as expected from differences in the pK(a) values of His26 and His33. The two lifetimes were found to depend on temperature but were not functions of either the magnitude of the pH-jump or the pre-pulse pH of the solution. The activation energies of the deligation processes support the suggestion that GuHCl-unfolded cyt c structures with non-native histidine axial ligands represent kinetic traps in unfolding.  
  Address Dipartimento di Fisica, Universita di Parma, Istituto Nazionale per la Fisica della Materia, 43100 Parma, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11439052 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3788  
Permanent link to this record
 

 
Author Gulotta, M.; Gilmanshin, R.; Buscher, T.C.; Callender, R.H.; Dyer, R.B. openurl 
  Title Core formation in apomyoglobin: probing the upper reaches of the folding energy landscape Type Journal Article
  Year (up) 2001 Publication Biochemistry Abbreviated Journal Biochemistry  
  Volume 40 Issue 17 Pages 5137-5143  
  Keywords Animals; Apoproteins/*chemistry; Computer Simulation; Horses; Hydrogen-Ion Concentration; Kinetics; Models, Molecular; Myoglobin/*chemistry; *Protein Folding; Protein Structure, Secondary; Protein Structure, Tertiary; Spectrometry, Fluorescence/instrumentation/methods; Thermodynamics; Tryptophan/chemistry  
  Abstract An acid-destabilized form of apomyoglobin, the so-called E state, consists of a set of heterogeneous structures that are all characterized by a stable hydrophobic core composed of 30-40 residues at the intersection of the A, G, and H helices of the protein, with little other secondary structure and no other tertiary structure. Relaxation kinetics studies were carried out to characterize the dynamics of core melting and formation in this protein. The unfolding and/or refolding response is induced by a laser-induced temperature jump between the folded and unfolded forms of E, and structural changes are monitored using the infrared amide I' absorbance at 1648-1651 cm(-1) that reports on the formation of solvent-protected, native-like helix in the core and by fluorescence emission changes from apomyoglobin's Trp14, a measure of burial of the indole group of this residue. The fluorescence kinetics data are monoexponential with a relaxation time of 14 micros. However, infrared kinetics data are best fit to a biexponential function with relaxation times of 14 and 59 micros. These relaxation times are very fast, close to the limits placed on folding reactions by diffusion. The 14 micros relaxation time is weakly temperature dependent and thus represents a pathway that is energetically downhill. The appearance of this relaxation time in both the fluorescence and infrared measurements indicates that this folding event proceeds by a concomitant formation of compact secondary and tertiary structures. The 59 micros relaxation time is much more strongly temperature dependent and has no fluorescence counterpart, indicating an activated process with a large energy barrier wherein nonspecific hydrophobic interactions between helix A and the G and H helices cause some helix burial but Trp14 remains solvent exposed. These results are best fit by a multiple-pathway kinetic model when U collapses to form the various folded core structures of E. Thus, the results suggest very robust dynamics for core formation involving multiple folding pathways and provide significant insight into the primary processes of protein folding.  
  Address Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-2960 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11318635 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3789  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print