toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hillidge, C.J.; Lees, P. openurl 
  Title Cardiac output in the conscious and anaesthetised horse Type Journal Article
  Year (up) 1975 Publication Equine veterinary journal Abbreviated Journal Equine Vet J  
  Volume 7 Issue 1 Pages 16-21  
  Keywords Anesthesia, Inhalation/*veterinary; Animals; Carbon Dioxide/blood; *Cardiac Output/veterinary; *Consciousness; Electrocardiography/veterinary; Ether, Ethyl; Female; Halothane; Heart Rate; Heart Ventricles/physiology; Horses/*physiology; Hydrogen-Ion Concentration; Male; Oxygen/blood; Posture  
  Abstract Cardiac output in the horse was measured before and at predetermined times during 2-hour periods of thiopentone-halothane and thiopentone-diethyl ether anaesthesia. Left ventricular stroke volume was decreased to a similar extent during anaesthesia with each volatile agent, but a greater reduction in cardiac output occurred during halothane anaesthesia. This finding reflected the differing effects of halothane and ether on heart rate, a slight bradycardia occurring with the former agent while ether produced a small degree of tachycardia. The latter effect was attributed to enhanced sympathoadrenal activity. Changes in cardiac output and stroke volume were considered in relation to other factors, including arterial blood pH and tensions of oxygen and carbon dioxide. Positive correlations between some of these variables and cardiac function were established. With both volatile agents the reductions in stroke volume and cardiac output were related to the duration of anaesthesia, being greatest during the early stages. Possible reasons for the tendency of stroke volume and cardiac output to return towards control levels are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:234842 Approved no  
  Call Number refbase @ user @ Serial 102  
Permanent link to this record
 

 
Author Dunn, M.F.; Branlant, G. openurl 
  Title Roles of zinc ion and reduced coenzyme in horse liver alcohol dehydrogenase catalysis. The mechanism of aldehyde activation Type Journal Article
  Year (up) 1975 Publication Biochemistry Abbreviated Journal Biochemistry  
  Volume 14 Issue 14 Pages 3176-3182  
  Keywords *Alcohol Oxidoreductases/metabolism; Aldehydes/*pharmacology; Animals; Binding Sites; Enzyme Activation/drug effects; Horses; Hydrogen-Ion Concentration; Kinetics; Liver/enzymology; *NAD/analogs & derivatives/pharmacology; Oxidation-Reduction; Protein Binding; Spectrophotometry; Spectrophotometry, Ultraviolet; Temperature; *Zinc/pharmacology  
  Abstract 1,4,5,6-Tetrahydronicotinamide adenine dinucleotide (H2NADH) has been investigated as a reduced coenzyme analog in the reaction between trans-4-N,N-dimethylaminocinnamaldehyde (I) (lambdamax 398 nm, epsilonmax 3.15 X 10-4 M-minus 1 cm-minus 1) and the horse liver alcohol dehydrogenase-NADH complex. These equilibrium binding and temperature-jump kinetic studies establish the following. (i) Substitution of H2NADH for NADH limits reaction to the reversible formation of a new chromophoric species, lambdamax 468 nm, epsilonmax 5.8 x 10-4 M-minus 1 cm-minus 1. This chromophore is demonstrated to be structurally analogous to the transient intermediate formed during the reaction of I with the enzyme-NADH complex [Dunn, M. F., and Hutchison, J. S. (1973), Biochemistry 12, 4882]. (ii) The process of intermediate formation with the enzyme-NADH complex is independent of pH over the range 6.13-10.54. Although studies were limited to the pH range 5.98-8.72, a similar pH independence appears to hold for the H2NADH system. (iii) Within the ternary complex, I is bound within van der Waal's contact distance of the coenzyme nicotinamide ring. (iv) Formation of the transient intermediate does not involve covalent modification of coenzyme. Based on these findings, we conclude that zinc ion has a Lewis acid function in facilitating the chemical activation of the aldehyde carbonyl for reduction, and that reduced coenzyme plays a noncovalent effector role in this substrate activating step.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-2960 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:238585 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3817  
Permanent link to this record
 

 
Author Czerlinski, G.H.; Wagner, M.; Erickson, J.O.; Theorell, H. openurl 
  Title Chemical relaxation studies on the system liver alcohol dehydrogenase, NADH and imidazole Type Journal Article
  Year (up) 1975 Publication Acta Chemica Scandinavica. Series B: Organic Chemistry and Biochemistry Abbreviated Journal Acta Chem Scand B  
  Volume 29 Issue 8 Pages 797-810  
  Keywords Alcohol Oxidoreductases/*metabolism; Animals; Computers; Hydrogen-Ion Concentration; Imidazoles/*metabolism; Kinetics; Liver/enzymology/*metabolism; Mathematics; Models, Chemical; NAD/*metabolism; Time Factors  
  Abstract Several years ago, Theorell and Czerlinski conducted experiments on the system of horse liver alcohol dehydrogenase, reduced nicotinamide adenine dinucleotide and imidazole, using the first version of the temperature jump apparatus with detection of changes in fluorescence. These early experiments were repeated with improved instrumentation and confirmed the early experiments in general terms. However, the improved detection system allowed to measure a slight concentration dependence of the relaxation time of around 3 ms. Furthermore, the chemical relaxation time was smaller than the one determined earlier (by factor 2). The data were evaluated much more rigorously than before, allowing an appropriate interpretation of the results. The observed relaxation time is largely due to rate constants in an interconversion of ternary complexes, which are faster than three (of the four) dissociation rate constants, determined previously by Theorell and McKinley-McKee.1,2 This fact contributed to earlier difficulties of finding any concentration dependence. However, the binding of imidazole to the binary enzyme-coenzyme complex can be made to couple kinetically into the interconversion rate of the two ternary complexes. The observed signal derives largely from the ternary complex(es). A substantial fluorescence signal change is associated with the observed relaxation process, suggesting a relocation of the imidazole in reference to the nicotinamide moiety of the bound coenzyme. Nine models are considered with two types of coupling of pre-equilibria (none-all). Quantitative evaluations favor the model with two ternary complexes connected by an interconversion outside the four-step (bimolecular) cycle. The ternary complex outside the cycle has much higher fluorescence yield than the one inside. The interconversion equilibrium is near unity for imidazole. If it would be shifted very much to the side of the “dead-end” complex (as in isobutyramide?!), stimulating action could not take place.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-4369 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:882 Approved no  
  Call Number refbase @ user @ Serial 3887  
Permanent link to this record
 

 
Author Rodier, F. openurl 
  Title [Spectral properties of porcine plasminogen: study of the acidic transition (author's transl)] Type Journal Article
  Year (up) 1976 Publication European journal of biochemistry / FEBS Abbreviated Journal Eur J Biochem  
  Volume 63 Issue 2 Pages 553-562  
  Keywords Animals; Binding Sites; Guanidines; Hydrogen-Ion Concentration; *Plasminogen; Protein Binding; Protein Conformation; Spectrometry, Fluorescence; Spectrophotometry; Spectrophotometry, Ultraviolet; Swine; Temperature  
  Abstract The acidic transition of porcine plasminogen, prepared by affinity chromatography, was studied by non-destructive methods. These methods are based on the analysis of the behaviour of the tryptophyls under various conditions. The perturbation of the absorption and emission spectra by pH or temperature and the dynamic quenching of the intrinsic fluorescence are used to obtain information on structural changes which affect the environment of these residues. It is shown that by decreasing pH the fluorescence emission spectra are shifted toward the long wavelengths, with a broadening of the fluorescence band. The same effect can be obtained at constant pH by heating the protein solution. In order to analyze these phenomena, it is assumed that the fluorescence intensities at 355 nm and 328 nm reflect the proportion of the tryptophans which are exposed to the solvent, and buried, respectively. The plot of the ratio of the fluorescence intensities at these wavelengths versus pH or temperature leads to a titration curve showing an unmasking of tryptophans. The proportion of exposed tryptophans is measured by the dynamic fluorescence quenching technique and the data analyzed according to Lehrer. The plot of the fraction of exposed tryptophyls versus pH also shows the unmasking of these chromophores. Thermal perturbation of a solution of plaminogen at neutral pH induces a difference absorption spectrum whose amplitudes at the maxima are proportional to the number of exposed aromatic residues. The comparison with a solution of fully denatured plasminogen in 6 M guanidium chloride, where all the tryptophyls are exposed, shows that the percentage of exposure is equal to 59%. This number is significantly higher than the percentage found by the fluorescence quenching technique (20%), indicating that some tryptophyls are located in crevices, exposed to the solvent but not to the iodide. At acidic pH the absorption difference spectra induced by thermal perturbation are not classical, since they show an inversion and a new band between 300 nm and 305 nm. This band is mentioned in the literature as a minor band of tryptophan which appears when this chromophore is located in an asymmetric environment. On plotting the maximum amplitude of these spectra obtained at acidic pH versus temperature, we obtain a curve indicating that two types of antagonistic interactions are involved in the perturbation of the chromophores spectra. The spectrophotometric titration of plasminogen gives classical absorption difference spectra. By plotting the maximum amplitude at 292 nm versus pH, we obtain a titration curve with an apparent pK of 2.9 units. This pK is acidic which respect to the pK value of a normal carboxyl. This low value can be due to a positively charged group in the neighbourhood of a carboxyl, which interacts with one or more chromophores. When the carboxyl becomes protonated, this positively charged group is free and available to perturb the environment of some chromophores...  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language French Summary Language Original Title Proprietes spectrales du plasminogene porcin. Etude de la transition acide  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:4326 Approved no  
  Call Number Admin @ knut @ Serial 22  
Permanent link to this record
 

 
Author Ziegler, W.H. openurl 
  Title [Endocrinological studies in arterial hypertension. Search for phaeochromocytoma] Type Journal Article
  Year (up) 1976 Publication Schweizerische Medizinische Wochenschrift Abbreviated Journal Schweiz Med Wochenschr  
  Volume 106 Issue 34 Pages 1148-1150  
  Keywords Angiography; Blood Volume; Catecholamines/urine; Glucagon/diagnostic use; Histamine/diagnostic use; Humans; Hydrogen-Ion Concentration; Hypertension/*etiology; Methods; Pheochromocytoma/*complications/diagnosis; Tyramine/diagnostic use  
  Abstract Elevated urinary catecholamines and their metabolites are the only findings which confirm the presence of pheochromocytoma. This examination is of particular interest if carried out in urine produced after spontaneous hypertensive episodes. Pharmacologic tests when carried out under standard conditions have proven to be a reliable aid in cases of suspected pheochromocytoma. Roentgenographic studies, determination of local plasma catecholamine concentrations and blood volume control should be undertaken in these patients before surgical procedure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language German Summary Language Original Title Endokrinologische Untersuchungen bei arterieller Hypertonie. Suche nach Phaochromozytom  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-7672 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12561 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4047  
Permanent link to this record
 

 
Author Wilson, M.T.; Ranson, R.J.; Masiakowski, P.; Czarnecka, E.; Brunori, M. openurl 
  Title A kinetic study of the pH-dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase) Type Journal Article
  Year (up) 1977 Publication European Journal of Biochemistry / FEBS Abbreviated Journal Eur J Biochem  
  Volume 77 Issue 1 Pages 193-199  
  Keywords Animals; Cyanides; *Cytochrome c Group/metabolism; Ferric Compounds; Horses; Hydrogen-Ion Concentration; Imidazoles; Kinetics; Mathematics; Myocardium/enzymology; *Oligopeptides/metabolism; *Peptide Fragments/metabolism; Protein Binding; Spectrophotometry; Temperature  
  Abstract The ferric form of the haem undecapeptide, derived from horse cytochrome c by peptic digestion, undergoes at least three pH-induced transitions with pK values of 3.4, 5.8 and 7.6. Temperature-jump experiments suggest that the first of these is due to the binding of a deprotonated imidazole group to the feric iron while the second and third arise from the binding of the two available amino groups present (the alpha-NH2 of valine and the epsilon-NH2 of lysine). Molecular models indicate that steric retraints on the peptide dictate that these amino groups may only coordinate to iron atoms via intermolecular bonds, thus leading to the polymerization of the peptide. Cyanide binding studies are in agreement with these conclusions and also yield a value of 3.6 X 10(6) M-1 s-1 for the intrinsic combination constant of CN- anion with the haem. A model is proposed which describes the pH-dependent properties of the ferric undecapeptide.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20304 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3814  
Permanent link to this record
 

 
Author Czerlinski, G.H.; Erickson, J.O.; Theorell, H. openurl 
  Title Chemical relaxation studies on the horse liver alcohol dehydrogenase system Type Journal Article
  Year (up) 1979 Publication Physiological Chemistry and Physics Abbreviated Journal Physiol Chem Phys  
  Volume 11 Issue 6 Pages 537-569  
  Keywords Alcohol Oxidoreductases/*metabolism; Animals; Buffers; Electron Transport; Ethanol/metabolism; Horses; Hydrogen-Ion Concentration; Liver/*enzymology; Mathematics; NAD/metabolism; Oscillometry; Osmolar Concentration; Temperature; Time Factors  
  Abstract Chemical relaxation studies on the system horse liver alcohol dehydrogenase, nicotinamide adenine dinucleotide, and ethanol were conducted observing fluorescence changes between 400 and 500 nm. Temperature-jump experiments were performed at pH 6.5, 7.0, 8.0, and 9.0; concentration-jump experiments at pH 9.0. The reciprocal of the slowest relaxation time was found to be linearly dependent upon the enzyme concentration for relatively low enzyme concentrations, as predicted earlier. Use of the wide pH-range necessitated expression of the four apparent dissociation constants of the catalytic reaction cycle in terms of pH-independent constants. The system was described in terms of only one (or two) catalysis-linked protons not associated with the electron transfer. Protonic steps in a buffered system are in rapid equilibrium, too fast to be measured with the equipment available. Assuming only two of the four bimolecular reaction steps in the four-step cycle are fast compared to the remaining two, six cases may be considered with six expressions for the reciprocal of the slowest relaxation time. Comparison with the experimental data revealed that the bimolecular reaction steps governing the slowest relaxation time change with pH. Above the effective time resolution of the temperature-lump instrument with fluorescence detection (0.1 msec) only one other relaxation time was detectable and only at pH 9. This relaxation time, found to be independent of the concentration of all reactants within experimental error (r = 10 +/- 5 msec), is most likely due to an interconversion among ternary complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9325 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:44918 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3813  
Permanent link to this record
 

 
Author Hasumi, H. openurl 
  Title Kinetic studies on isomerization of ferricytochrome c in alkaline and acid pH ranges by the circular dichroism stopped-flow method Type Journal Article
  Year (up) 1980 Publication Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta  
  Volume 626 Issue 2 Pages 265-276  
  Keywords Circular Dichroism; *Cytochrome c Group; Hydrogen-Ion Concentration; Isomerism; Kinetics; Spectrophotometry  
  Abstract The isomerization of horse-heart ferricytochrome c caused by varying pH was kinetically studied by using circular dichroism (CD) and optical absorption stopped-flow techniques. In the pH range of 7--13, the existence of the three different forms of ferricytochrome c (pH less than 10, pH 10--12, and pH greater than 12) was indicated from the statistical difference CD spectra. On the basis of analyses of the stopped-flow traces in the near-ultraviolet and Soret wavelength regions, the isomerization of ferricytochrome c from neutral form to the above three alkaline forms was interpreted as follows (1) below pH 10, the replacement of the intrinsic ligand of methionine residue by lysine residue occurs; (2) between pH 10 and 12, the uncoupling of the polypeptide chain from close proximity of the heme group occurs first, followed by the interconversion of the intrinsic ligands; and (3) above pH 12, hydroxide form of ferricytochrome c is formed, though the replacement of the intrinsic ligand by extrinsic ligands may occur via different routes from those below pH 12. The CD changes at 288 nm and in the Soret region caused by the pH-jump (down) from pH 6.0 to 1.6 were compared with the appearance of the 620-nm absorption band ascribed to the formation of the high-spin form of ferricytochrome c. Both CD and absorption changes indicated that the isomerization at pH 1.6 consisted of two processes: one proceeded within the dead-time (about 2 ms) of the stopped-flow apparatus and the other proceeded at a determinable rate with the apparatus. On the basis of these results, the isomerization of ferricytochrome c at pH 1.6 was explained as follows: (1) the transition from the low-spin form to the high-spin forms occurs within about 2 ms, the dead-time of the stopped-flow apparatus; and (2) the polypeptide chain is unfolded after the formation of the high-spin form.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3002 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:6260152 Approved no  
  Call Number refbase @ user @ Serial 3876  
Permanent link to this record
 

 
Author Saigo, S. openurl 
  Title A transient spin-state change during alkaline isomerization of ferricytochrome c Type Journal Article
  Year (up) 1981 Publication Journal of Biochemistry Abbreviated Journal J Biochem (Tokyo)  
  Volume 89 Issue 6 Pages 1977-1980  
  Keywords Animals; *Cytochrome c Group; Horses; Hydrogen-Ion Concentration; Isomerism; Kinetics; Myocardium/enzymology; Oxidation-Reduction; Spectrophotometry  
  Abstract Kinetic difference spectra during the alkaline isomerization of ferricytochrome c were obtained by the pH-jump method in the range of 540 to 655 nm. The spectrum of the transient intermediate, which appears during the course of the isomerization, was reproduced from the spectra. The intermediate showed an intense absorption band at 600 nm, indicating that it is a high spin or mixed spin species. This is in contrast to the stable neutral and alkaline forms which are low spin species. The transient spin-state change during the isomerization was also observed upon rapid oxidation of ferrocytochrome c at alkaline pH.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-924X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:6270075 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3808  
Permanent link to this record
 

 
Author Andersson, P.; Kvassman, J.; Lindstrom, A.; Olden, B.; Pettersson, G. openurl 
  Title Effect of NADH on the pKa of zinc-bound water in liver alcohol dehydrogenase Type Journal Article
  Year (up) 1981 Publication European Journal of Biochemistry / FEBS Abbreviated Journal Eur J Biochem  
  Volume 113 Issue 3 Pages 425-433  
  Keywords Alcohol Oxidoreductases/*metabolism; Aldehydes/metabolism; Animals; Binding Sites; Cinnamates/metabolism; Horses; Hydrogen-Ion Concentration; Kinetics; Ligands; Liver/*metabolism; NAD/*metabolism; Water/metabolism; Zinc/metabolism  
  Abstract Equilibrium constants for coenzyme binding to liver alcohol dehydrogenase have been determined over the pH range 10--12 by pH-jump stop-flow techniques. The binding of NADH or NAD+ requires the protonated form of an ionizing group (distinct from zinc-bound water) with a pKa of 10.4. Complex formation with NADH exhibits an additional dependence on the protonation state of an ionizing group with a pKa of 11.2. The binding of trans-N,N-dimethylaminocinnamaldehyde to the enzyme . NADH complex is prevented by ionization of the latter group. It is concluded from these results that the pKa-11.2-dependence of NADH binding most likely derives from ionization of the water molecule bound at the catalytic zinc ion of the enzyme subunit. The pKa value of 11.2 thus assigned to zinc-bound water in the enzyme . NADH complex appears to be typical for an aquo ligand in the inner-sphere ligand field provided by the zinc-binding amino acid residues in liver alcohol dehydrogenase. This means that the pKa of metal-bound water in zinc-containing enzymes can be assumed to correlate primarily with the number of negatively charged protein ligands coordinated by the active-site zinc ion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:7011796 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3810  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print