toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hinchcliff, K.W.; Kohn, C.W.; Geor, R.; McCutcheon, L.J.; Foreman, J.; Andrews, F.M.; Allen, A.K.; White, S.L.; Williamson, L.H.; Maykuth, P.L. openurl 
  Title Acid:base and serum biochemistry changes in horses competing at a modified 1 Star 3-day-event Type Journal Article
  Year 1995 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume (up) Issue 20 Pages 105-110  
  Keywords *Acid-Base Equilibrium; Animals; Blood Proteins/analysis; Body Water/metabolism; Carbon Dioxide/blood; Electrolytes/*blood; Female; Hematocrit/veterinary; Homeostasis; Horses/*blood/physiology; Hydrogen-Ion Concentration; Male; Physical Conditioning, Animal/*physiology  
  Abstract We examined the effects of participation in each of 3 modifications of Day 2 of a 3-day-event on blood and serum variables indicative of hydration, acid:base status and electrolyte homeostasis of horses. Three groups of horses – 8 European (E) horses and 2 groups each of 9 North American horses performed identical Days 1 (dressage) and 3 (stadium jumping) of a 3-day-event. E horses and one group of the North American horses (TD) performed modifications of Day 2 of a 1 Star 3-day-event and the other group of North American horses (HT) performed a Horse Trial on Day 2. Jugular venous blood was collected from each horse on the morning of Day 2 before any warm-up activity, between 4 min 55 s and 5 min 15 s after Phase D and the following morning. Eight E horses, 5 TD horses and 8 HT horses completed the trials. There were few significant differences in acid:base or serum biochemistry variables detected among horses performing either 2 variations of the Speed and Endurance day of a 1 Star 3-day-event, or a conventional Horse Trial. Failure to detect differences among groups may have been related to the low statistical power associated with the small number of horses, especially in the TD group, variation in quality of horses among groups and the different times of the day at which the E horses competed. Differences detected among time points were usually common to all groups and demonstrated metabolic acidosis with a compensatory respiratory alkalosis, a reduction in total body water and cation content, and hypocalcaemia. Importantly, horses of all groups did not replenish cation, chloride, and calcium deficits after 14-18 h of recovery.  
  Address Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus 43210-1089, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8933092 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3740  
Permanent link to this record
 

 
Author Hillidge, C.J.; Lees, P. openurl 
  Title Cardiac output in the conscious and anaesthetised horse Type Journal Article
  Year 1975 Publication Equine veterinary journal Abbreviated Journal Equine Vet J  
  Volume (up) 7 Issue 1 Pages 16-21  
  Keywords Anesthesia, Inhalation/*veterinary; Animals; Carbon Dioxide/blood; *Cardiac Output/veterinary; *Consciousness; Electrocardiography/veterinary; Ether, Ethyl; Female; Halothane; Heart Rate; Heart Ventricles/physiology; Horses/*physiology; Hydrogen-Ion Concentration; Male; Oxygen/blood; Posture  
  Abstract Cardiac output in the horse was measured before and at predetermined times during 2-hour periods of thiopentone-halothane and thiopentone-diethyl ether anaesthesia. Left ventricular stroke volume was decreased to a similar extent during anaesthesia with each volatile agent, but a greater reduction in cardiac output occurred during halothane anaesthesia. This finding reflected the differing effects of halothane and ether on heart rate, a slight bradycardia occurring with the former agent while ether produced a small degree of tachycardia. The latter effect was attributed to enhanced sympathoadrenal activity. Changes in cardiac output and stroke volume were considered in relation to other factors, including arterial blood pH and tensions of oxygen and carbon dioxide. Positive correlations between some of these variables and cardiac function were established. With both volatile agents the reductions in stroke volume and cardiac output were related to the duration of anaesthesia, being greatest during the early stages. Possible reasons for the tendency of stroke volume and cardiac output to return towards control levels are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:234842 Approved no  
  Call Number refbase @ user @ Serial 102  
Permanent link to this record
 

 
Author Czerlinski, G.H.; Erickson, J.O.; Theorell, H. openurl 
  Title Chemical relaxation studies on the horse liver alcohol dehydrogenase system Type Journal Article
  Year 1979 Publication Physiological Chemistry and Physics Abbreviated Journal Physiol Chem Phys  
  Volume (up) 11 Issue 6 Pages 537-569  
  Keywords Alcohol Oxidoreductases/*metabolism; Animals; Buffers; Electron Transport; Ethanol/metabolism; Horses; Hydrogen-Ion Concentration; Liver/*enzymology; Mathematics; NAD/metabolism; Oscillometry; Osmolar Concentration; Temperature; Time Factors  
  Abstract Chemical relaxation studies on the system horse liver alcohol dehydrogenase, nicotinamide adenine dinucleotide, and ethanol were conducted observing fluorescence changes between 400 and 500 nm. Temperature-jump experiments were performed at pH 6.5, 7.0, 8.0, and 9.0; concentration-jump experiments at pH 9.0. The reciprocal of the slowest relaxation time was found to be linearly dependent upon the enzyme concentration for relatively low enzyme concentrations, as predicted earlier. Use of the wide pH-range necessitated expression of the four apparent dissociation constants of the catalytic reaction cycle in terms of pH-independent constants. The system was described in terms of only one (or two) catalysis-linked protons not associated with the electron transfer. Protonic steps in a buffered system are in rapid equilibrium, too fast to be measured with the equipment available. Assuming only two of the four bimolecular reaction steps in the four-step cycle are fast compared to the remaining two, six cases may be considered with six expressions for the reciprocal of the slowest relaxation time. Comparison with the experimental data revealed that the bimolecular reaction steps governing the slowest relaxation time change with pH. Above the effective time resolution of the temperature-lump instrument with fluorescence detection (0.1 msec) only one other relaxation time was detectable and only at pH 9. This relaxation time, found to be independent of the concentration of all reactants within experimental error (r = 10 +/- 5 msec), is most likely due to an interconversion among ternary complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9325 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:44918 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3813  
Permanent link to this record
 

 
Author Hughes, K.L.; Sulaiman, I. openurl 
  Title The ecology of Rhodococcus equi and physicochemical influences on growth Type Journal Article
  Year 1987 Publication Veterinary Microbiology Abbreviated Journal Vet Microbiol  
  Volume (up) 14 Issue 3 Pages 241-250  
  Keywords Animals; Feces/microbiology; Horses; Hydrogen-Ion Concentration; Rhodococcus/*growth & development; *Soil Microbiology; Temperature  
  Abstract Growth of Rhodococcus equi was studied in vitro. Optimal growth occurred under aerobic conditions between pH 7.0 and 8.5, at 30 degrees C. R. equi survived better in a neutral soil (pH 7.3) than it did in two acid soils (pH less than 5.5). It grew substantially better in soils enriched with faeces than in soils alone. Simple organic acids in horse dung, especially acetate and propionate, appear to be important in supporting growth of R. equi in the environment. The ecology of R. equi can be best explained by an environmental cycle allowing its proliferation in dung, influenced by management, grazing behaviour and prevailing climatic conditions. Preventive measures should be aimed at reducing or avoiding focal areas of faecal contamination in the environment.  
  Address School of Veterinary Science, University of Melbourne, Parkville, Vic., Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-1135 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:3672866 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2678  
Permanent link to this record
 

 
Author Dunn, M.F.; Branlant, G. openurl 
  Title Roles of zinc ion and reduced coenzyme in horse liver alcohol dehydrogenase catalysis. The mechanism of aldehyde activation Type Journal Article
  Year 1975 Publication Biochemistry Abbreviated Journal Biochemistry  
  Volume (up) 14 Issue 14 Pages 3176-3182  
  Keywords *Alcohol Oxidoreductases/metabolism; Aldehydes/*pharmacology; Animals; Binding Sites; Enzyme Activation/drug effects; Horses; Hydrogen-Ion Concentration; Kinetics; Liver/enzymology; *NAD/analogs & derivatives/pharmacology; Oxidation-Reduction; Protein Binding; Spectrophotometry; Spectrophotometry, Ultraviolet; Temperature; *Zinc/pharmacology  
  Abstract 1,4,5,6-Tetrahydronicotinamide adenine dinucleotide (H2NADH) has been investigated as a reduced coenzyme analog in the reaction between trans-4-N,N-dimethylaminocinnamaldehyde (I) (lambdamax 398 nm, epsilonmax 3.15 X 10-4 M-minus 1 cm-minus 1) and the horse liver alcohol dehydrogenase-NADH complex. These equilibrium binding and temperature-jump kinetic studies establish the following. (i) Substitution of H2NADH for NADH limits reaction to the reversible formation of a new chromophoric species, lambdamax 468 nm, epsilonmax 5.8 x 10-4 M-minus 1 cm-minus 1. This chromophore is demonstrated to be structurally analogous to the transient intermediate formed during the reaction of I with the enzyme-NADH complex [Dunn, M. F., and Hutchison, J. S. (1973), Biochemistry 12, 4882]. (ii) The process of intermediate formation with the enzyme-NADH complex is independent of pH over the range 6.13-10.54. Although studies were limited to the pH range 5.98-8.72, a similar pH independence appears to hold for the H2NADH system. (iii) Within the ternary complex, I is bound within van der Waal's contact distance of the coenzyme nicotinamide ring. (iv) Formation of the transient intermediate does not involve covalent modification of coenzyme. Based on these findings, we conclude that zinc ion has a Lewis acid function in facilitating the chemical activation of the aldehyde carbonyl for reduction, and that reduced coenzyme plays a noncovalent effector role in this substrate activating step.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-2960 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:238585 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3817  
Permanent link to this record
 

 
Author Abbruzzetti, S.; Viappiani, C.; Sinibaldi, F.; Santucci, R. openurl 
  Title Kinetics of histidine dissociation from the heme Fe(III) in N-fragment (residues 1-56) of cytochrome c Type Journal Article
  Year 2004 Publication The Protein Journal Abbreviated Journal Protein J  
  Volume (up) 23 Issue 8 Pages 519-527  
  Keywords Animals; Cytochromes c/*chemistry; Enzyme Activation; Histidine/*chemistry; Horses; Hydrogen-Ion Concentration; Kinetics; Lasers; Ligands; Peptide Mapping; Photolysis; Spectrophotometry  
  Abstract We have here investigated the dissociation kinetics of the His side chains axially ligated to the heme-iron in the ferric (1-56 residues) N-fragment of horse cyt c. The ligand deligation induced by acidic pH-jump occurs as a biexponential process with different pre-exponential factors, consistent with a structural heterogeneity in solution and the presence of two differently coordinated species. In analogy with GuHCl-denatured cyt c, our data indicate the presence in solution of two ferric forms of the N-fragment characterized by bis-His coordination, as summarized in the following scheme: His18-Fe(III)-His26 <==> His18-Fe(III)-His33. We have found that the pre-exponential factors depend on the extent of the pH-jump. This may be correlated with the different pKa values shown by His26 and His33; due to steric factors, His26 binds to the heme-Fe(III) less strongly than His33, as recently shown by studies on denatured cyt c. Interestingly, the two lifetimes are affected by temperature but not by the extent of the pH-jump. The lower pKa for the deligation reaction required the use of an improved laser pH-jump setup, capable of inducing changes in H+ concentration as large as 1 mM after the end of the laser pulse. For the ferric N-fragment, close activation entropy values have been determined for the two histidines coordinated to the iron; this result significantly differs from that for GuHCl-denatured cyt c, where largely different values of activation entropy were calculated. This underlines the role played by the missing segment (residues 57-104) peptide chain in discriminating deligation of the “nonnative” His from the sixth coordination position of the metal.  
  Address Dipartimento di Fisica, Universita degli Studi di Parma, Parco Area delle Scienze 7/A 43100 Parma, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1572-3887 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15648974 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3770  
Permanent link to this record
 

 
Author Jablonska, E.M.; Ziolkowska, S.M.; Gill, J.; Szykula, R.; Faff, J. openurl 
  Title Changes in some haematological and metabolic indices in young horses during the first year of jump-training Type Journal Article
  Year 1991 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume (up) 23 Issue 4 Pages 309-311  
  Keywords Alanine Transaminase/blood; Animals; Bicarbonates/blood; Blood Glucose/analysis; Blood Proteins/analysis; Breeding; Carbon Dioxide/blood; Exercise Test/veterinary; Fatty Acids, Nonesterified/blood; Female; Fructose-Bisphosphate Aldolase/blood; Hematocrit/veterinary; Hemoglobins/analysis; Horses/*blood/metabolism; Hydrogen-Ion Concentration; Lactates/blood; Male; Oxygen/blood; *Physical Conditioning, Animal; Pyruvates/blood  
  Abstract Effects of an 18 min exercise test, on three separate occasions during a one year jump-training programme, was studied in seven horses. Determinations were carried out on venous blood for packed cell volume, haemoglobin, total protein, lactate and pyruvate, glucose, free fatty acids, insulin, glucagon, blood gases, bicarbonate, pH, aldolase, aspartate aminotransferase and alanine amino-transferase. Exercise caused a slight increase in lactate and pyruvate, total protein, aldolase, alanine aminotransferase, pO2, bicarbonate and pH. Glucose, free fatty acids and pCO2 levels decreased. Training caused no significant difference in these changes. However, during the year, increases in lactate and decreases in pH (resting levels) were observed.  
  Address Department of Vertebrate Animal Physiology, Warszawa, Poland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1915234 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3801  
Permanent link to this record
 

 
Author Czerlinski, G.H.; Wagner, M.; Erickson, J.O.; Theorell, H. openurl 
  Title Chemical relaxation studies on the system liver alcohol dehydrogenase, NADH and imidazole Type Journal Article
  Year 1975 Publication Acta Chemica Scandinavica. Series B: Organic Chemistry and Biochemistry Abbreviated Journal Acta Chem Scand B  
  Volume (up) 29 Issue 8 Pages 797-810  
  Keywords Alcohol Oxidoreductases/*metabolism; Animals; Computers; Hydrogen-Ion Concentration; Imidazoles/*metabolism; Kinetics; Liver/enzymology/*metabolism; Mathematics; Models, Chemical; NAD/*metabolism; Time Factors  
  Abstract Several years ago, Theorell and Czerlinski conducted experiments on the system of horse liver alcohol dehydrogenase, reduced nicotinamide adenine dinucleotide and imidazole, using the first version of the temperature jump apparatus with detection of changes in fluorescence. These early experiments were repeated with improved instrumentation and confirmed the early experiments in general terms. However, the improved detection system allowed to measure a slight concentration dependence of the relaxation time of around 3 ms. Furthermore, the chemical relaxation time was smaller than the one determined earlier (by factor 2). The data were evaluated much more rigorously than before, allowing an appropriate interpretation of the results. The observed relaxation time is largely due to rate constants in an interconversion of ternary complexes, which are faster than three (of the four) dissociation rate constants, determined previously by Theorell and McKinley-McKee.1,2 This fact contributed to earlier difficulties of finding any concentration dependence. However, the binding of imidazole to the binary enzyme-coenzyme complex can be made to couple kinetically into the interconversion rate of the two ternary complexes. The observed signal derives largely from the ternary complex(es). A substantial fluorescence signal change is associated with the observed relaxation process, suggesting a relocation of the imidazole in reference to the nicotinamide moiety of the bound coenzyme. Nine models are considered with two types of coupling of pre-equilibria (none-all). Quantitative evaluations favor the model with two ternary complexes connected by an interconversion outside the four-step (bimolecular) cycle. The ternary complex outside the cycle has much higher fluorescence yield than the one inside. The interconversion equilibrium is near unity for imidazole. If it would be shifted very much to the side of the “dead-end” complex (as in isobutyramide?!), stimulating action could not take place.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-4369 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:882 Approved no  
  Call Number refbase @ user @ Serial 3887  
Permanent link to this record
 

 
Author Gulotta, M.; Gilmanshin, R.; Buscher, T.C.; Callender, R.H.; Dyer, R.B. openurl 
  Title Core formation in apomyoglobin: probing the upper reaches of the folding energy landscape Type Journal Article
  Year 2001 Publication Biochemistry Abbreviated Journal Biochemistry  
  Volume (up) 40 Issue 17 Pages 5137-5143  
  Keywords Animals; Apoproteins/*chemistry; Computer Simulation; Horses; Hydrogen-Ion Concentration; Kinetics; Models, Molecular; Myoglobin/*chemistry; *Protein Folding; Protein Structure, Secondary; Protein Structure, Tertiary; Spectrometry, Fluorescence/instrumentation/methods; Thermodynamics; Tryptophan/chemistry  
  Abstract An acid-destabilized form of apomyoglobin, the so-called E state, consists of a set of heterogeneous structures that are all characterized by a stable hydrophobic core composed of 30-40 residues at the intersection of the A, G, and H helices of the protein, with little other secondary structure and no other tertiary structure. Relaxation kinetics studies were carried out to characterize the dynamics of core melting and formation in this protein. The unfolding and/or refolding response is induced by a laser-induced temperature jump between the folded and unfolded forms of E, and structural changes are monitored using the infrared amide I' absorbance at 1648-1651 cm(-1) that reports on the formation of solvent-protected, native-like helix in the core and by fluorescence emission changes from apomyoglobin's Trp14, a measure of burial of the indole group of this residue. The fluorescence kinetics data are monoexponential with a relaxation time of 14 micros. However, infrared kinetics data are best fit to a biexponential function with relaxation times of 14 and 59 micros. These relaxation times are very fast, close to the limits placed on folding reactions by diffusion. The 14 micros relaxation time is weakly temperature dependent and thus represents a pathway that is energetically downhill. The appearance of this relaxation time in both the fluorescence and infrared measurements indicates that this folding event proceeds by a concomitant formation of compact secondary and tertiary structures. The 59 micros relaxation time is much more strongly temperature dependent and has no fluorescence counterpart, indicating an activated process with a large energy barrier wherein nonspecific hydrophobic interactions between helix A and the G and H helices cause some helix burial but Trp14 remains solvent exposed. These results are best fit by a multiple-pathway kinetic model when U collapses to form the various folded core structures of E. Thus, the results suggest very robust dynamics for core formation involving multiple folding pathways and provide significant insight into the primary processes of protein folding.  
  Address Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-2960 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11318635 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3789  
Permanent link to this record
 

 
Author Haruta, N.; Kitagawa, T. openurl 
  Title Time-resolved UV resonance Raman investigation of protein folding using a rapid mixer: characterization of kinetic folding intermediates of apomyoglobin Type Journal Article
  Year 2002 Publication Biochemistry Abbreviated Journal Biochemistry  
  Volume (up) 41 Issue 21 Pages 6595-6604  
  Keywords Animals; Apoproteins/*chemistry; Circular Dichroism; Holoenzymes/chemistry; Horses; Hydrochloric Acid/chemistry; Hydrogen-Ion Concentration; Imidazoles/chemistry; Kinetics; Models, Molecular; Myoglobin/*chemistry; Peptide Fragments/chemistry; *Protein Folding; Protein Structure, Secondary; Spectrum Analysis, Raman/*methods; Tryptophan/*chemistry; Ultraviolet Rays; Whales  
  Abstract The 244-nm excited transient UV resonance Raman spectra are observed for the refolding intermediates of horse apomyoglobin (h-apoMb) with a newly constructed mixed flow cell system, and the results are interpreted on the basis of the spectra observed for the equilibrium acid unfolding of the same protein. The dead time of mixing, which was determined with the appearance of UV Raman bands of imidazolium upon mixing of imidazole with acid, was 150 micros under the flow rate that was adopted. The pH-jump experiments of h-apoMb from pH 2.2 to 5.6 conducted with this device demonstrated the presence of three folding intermediates. On the basis of the analysis of W3 and W7 bands of Trp7 and Trp14, the first intermediate, formed before 250 micros, involved incorporation of Trp14 into the alpha-helix from a random coil. The frequency shift of the W3 band of Trp14 observed for this process was reproduced with a model peptide of the A helix when it forms the alpha-helix. In the second intermediate, formed around 1 ms after the start of refolding, the surroundings of both Trp7 and Trp14 were significantly hydrophobic, suggesting the formation of the hydrophobic core. In the third intermediate appearing around 3 ms, the hydrophobicity was relaxed to the same level as that of the pH 4 equilibrium intermediate, which was investigated in detail with the stationary state technique. The change from the third intermediate to the native state needs more time than 40 ms, while the appearance of the native spectrum after the mixing of the same solutions was confirmed separately.  
  Address School of Mathematical and Physical Sciences, The Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-2960 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12022863 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3785  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print