|   | 
Details
   web
Records
Author Hughes, K.L.; Sulaiman, I.
Title The ecology of Rhodococcus equi and physicochemical influences on growth Type Journal Article
Year 1987 Publication (down) Veterinary Microbiology Abbreviated Journal Vet Microbiol
Volume 14 Issue 3 Pages 241-250
Keywords Animals; Feces/microbiology; Horses; Hydrogen-Ion Concentration; Rhodococcus/*growth & development; *Soil Microbiology; Temperature
Abstract Growth of Rhodococcus equi was studied in vitro. Optimal growth occurred under aerobic conditions between pH 7.0 and 8.5, at 30 degrees C. R. equi survived better in a neutral soil (pH 7.3) than it did in two acid soils (pH less than 5.5). It grew substantially better in soils enriched with faeces than in soils alone. Simple organic acids in horse dung, especially acetate and propionate, appear to be important in supporting growth of R. equi in the environment. The ecology of R. equi can be best explained by an environmental cycle allowing its proliferation in dung, influenced by management, grazing behaviour and prevailing climatic conditions. Preventive measures should be aimed at reducing or avoiding focal areas of faecal contamination in the environment.
Address School of Veterinary Science, University of Melbourne, Parkville, Vic., Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-1135 ISBN Medium
Area Expedition Conference
Notes PMID:3672866 Approved no
Call Number Equine Behaviour @ team @ Serial 2678
Permanent link to this record
 

 
Author Nicol, C.J.; Davidson, H.P.D.; Harris, P.A.; Waters, A.J.; Wilson, A.D.
Title Study of crib-biting and gastric inflammation and ulceration in young horses Type Journal Article
Year 2002 Publication (down) The Veterinary record Abbreviated Journal Vet. Rec.
Volume 151 Issue 22 Pages 658-662
Keywords Animal Husbandry/methods; Animals; Antacids/therapeutic use; *Behavior, Animal; Diet/veterinary; Endoscopy, Gastrointestinal/veterinary; Feces/chemistry; Female; Gastritis/diet therapy/physiopathology/*veterinary; Horse Diseases/diet therapy/*physiopathology/psychology; Horses; Hydrogen-Ion Concentration; Male; Random Allocation; Stereotyped Behavior/*physiology; Stomach Ulcer/diet therapy/physiopathology/*veterinary; Treatment Outcome; Weaning
Abstract Nineteen young horses that had recently started to perform the stereotypy of crib-biting were compared with 16 non-stereotypic horses for 14 weeks. After initial observations of their behaviour and an endoscopic examination of the condition of their stomachs, the horses were randomly allocated to a control or an antacid diet At the start of the trial, the stomachs of the crib-biting foals were significantly more ulcerated and inflamed than the stomachs of the normal foals. In addition, the faecal pH of the crib-biting foals (6.05) was significantly lower than that of the normal foals (6.58). The antacid diet resulted in a significant improvement in the condition of the horses' stomachs. The crib-biting behaviour declined in most of the foals, regardless of their diet, but tended to decline to a greater extent in the foals on the antacid diet.
Address Department of Clinical Veterinary Science, University of Bristol, Langford House, Bristol BS40 5DU
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-4900 ISBN Medium
Area Expedition Conference
Notes PMID:12498408 Approved no
Call Number refbase @ user @ Serial 83
Permanent link to this record
 

 
Author Abbruzzetti, S.; Viappiani, C.; Sinibaldi, F.; Santucci, R.
Title Kinetics of histidine dissociation from the heme Fe(III) in N-fragment (residues 1-56) of cytochrome c Type Journal Article
Year 2004 Publication (down) The Protein Journal Abbreviated Journal Protein J
Volume 23 Issue 8 Pages 519-527
Keywords Animals; Cytochromes c/*chemistry; Enzyme Activation; Histidine/*chemistry; Horses; Hydrogen-Ion Concentration; Kinetics; Lasers; Ligands; Peptide Mapping; Photolysis; Spectrophotometry
Abstract We have here investigated the dissociation kinetics of the His side chains axially ligated to the heme-iron in the ferric (1-56 residues) N-fragment of horse cyt c. The ligand deligation induced by acidic pH-jump occurs as a biexponential process with different pre-exponential factors, consistent with a structural heterogeneity in solution and the presence of two differently coordinated species. In analogy with GuHCl-denatured cyt c, our data indicate the presence in solution of two ferric forms of the N-fragment characterized by bis-His coordination, as summarized in the following scheme: His18-Fe(III)-His26 <==> His18-Fe(III)-His33. We have found that the pre-exponential factors depend on the extent of the pH-jump. This may be correlated with the different pKa values shown by His26 and His33; due to steric factors, His26 binds to the heme-Fe(III) less strongly than His33, as recently shown by studies on denatured cyt c. Interestingly, the two lifetimes are affected by temperature but not by the extent of the pH-jump. The lower pKa for the deligation reaction required the use of an improved laser pH-jump setup, capable of inducing changes in H+ concentration as large as 1 mM after the end of the laser pulse. For the ferric N-fragment, close activation entropy values have been determined for the two histidines coordinated to the iron; this result significantly differs from that for GuHCl-denatured cyt c, where largely different values of activation entropy were calculated. This underlines the role played by the missing segment (residues 57-104) peptide chain in discriminating deligation of the “nonnative” His from the sixth coordination position of the metal.
Address Dipartimento di Fisica, Universita degli Studi di Parma, Parco Area delle Scienze 7/A 43100 Parma, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1572-3887 ISBN Medium
Area Expedition Conference
Notes PMID:15648974 Approved no
Call Number Equine Behaviour @ team @ Serial 3770
Permanent link to this record
 

 
Author Dyson, H.J.; Beattie, J.K.
Title Spin state and unfolding equilibria of ferricytochrome c in acidic solutions Type Journal Article
Year 1982 Publication (down) The Journal of Biological Chemistry Abbreviated Journal J Biol Chem
Volume 257 Issue 5 Pages 2267-2273
Keywords Animals; *Cytochrome c Group; Electron Spin Resonance Spectroscopy; Heme; Horses; Hydrogen-Ion Concentration; Kinetics; Ligands; Myocardium; Protein Binding; Protein Conformation; Spectrophotometry; Temperature
Abstract Equilibrium, stopped flow, and temperature-jump spectrophotometry have been used to identify processes in the unfolding of ferricytochrome c in acidic aqueous solutions. A relaxation occurring in approximately 100 microseconds involves perturbation of a spin-equilibrium between two folded conformers of the protein with methionine-80 coordinated or dissociated from the heme iron. The protein unfolds more slowly, in milliseconds, with dissociation and protonation of histidine-18. These two transitions appear cooperative in equilibrium measurements at low (0.01 M) ionic strength, but are separated at higher (0.10 M) ionic strength. They are resolved under both conditions in the dynamic measurements. The spin-equilibrium description permits a unified explanation of a number of properties of ferricytochrome c in acidic aqueous solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9258 ISBN Medium
Area Expedition Conference
Notes PMID:6277891 Approved no
Call Number Equine Behaviour @ team @ Serial 3807
Permanent link to this record
 

 
Author Ziegler, W.H.
Title [Endocrinological studies in arterial hypertension. Search for phaeochromocytoma] Type Journal Article
Year 1976 Publication (down) Schweizerische Medizinische Wochenschrift Abbreviated Journal Schweiz Med Wochenschr
Volume 106 Issue 34 Pages 1148-1150
Keywords Angiography; Blood Volume; Catecholamines/urine; Glucagon/diagnostic use; Histamine/diagnostic use; Humans; Hydrogen-Ion Concentration; Hypertension/*etiology; Methods; Pheochromocytoma/*complications/diagnosis; Tyramine/diagnostic use
Abstract Elevated urinary catecholamines and their metabolites are the only findings which confirm the presence of pheochromocytoma. This examination is of particular interest if carried out in urine produced after spontaneous hypertensive episodes. Pharmacologic tests when carried out under standard conditions have proven to be a reliable aid in cases of suspected pheochromocytoma. Roentgenographic studies, determination of local plasma catecholamine concentrations and blood volume control should be undertaken in these patients before surgical procedure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language German Summary Language Original Title Endokrinologische Untersuchungen bei arterieller Hypertonie. Suche nach Phaochromozytom
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-7672 ISBN Medium
Area Expedition Conference
Notes PMID:12561 Approved no
Call Number Equine Behaviour @ team @ Serial 4047
Permanent link to this record
 

 
Author Permyakov, S.E.; Khokhlova, T.I.; Nazipova, A.A.; Zhadan, A.P.; Morozova-Roche, L.A.; Permyakov, E.A.
Title Calcium-binding and temperature induced transitions in equine lysozyme: new insights from the pCa-temperature “phase diagrams” Type Journal Article
Year 2006 Publication (down) Proteins Abbreviated Journal Proteins
Volume 65 Issue 4 Pages 984-998
Keywords Animals; Apoproteins/chemistry/metabolism; Binding Sites; Calcium/chemistry/*metabolism; Cattle; Edetic Acid/metabolism; Horses/metabolism; Hydrogen-Ion Concentration; Lactalbumin/chemistry/metabolism; Muramidase/*chemistry/*metabolism; Protein Denaturation; Spectrometry, Fluorescence; *Temperature; Thermodynamics; Tryptophan/chemistry/metabolism
Abstract The most universal approach to the studies of metal binding properties of single-site metal binding proteins, i.e., construction of a “phase diagram” in coordinates of free metal ion concentration-temperature, has been applied to equine lysozyme (EQL). EQL has one relatively strong calcium binding site and shows two thermal transitions, but only one of them is Ca(2+)-dependent. It has been found that the Ca(2+)-dependent behavior of the low temperature thermal transition (I) of EQL can be adequately described based upon the simplest four-states scheme of metal- and temperature-induced structural changes in a protein. All thermodynamic parameters of this scheme were determined experimentally and used for construction of the EQL phase diagram in the pCa-temperature space. Comparison of the phase diagram with that for alpha-lactalbumin (alpha-LA), a close homologue of lysozyme, allows visualization of the differences in thermodynamic behavior of the two proteins. The thermal stability of apo-EQL (transition I) closely resembles that for apo-alpha-LA (mid-temperature 25 degrees C), while the thermal stabilities of their Ca(2+)-bound forms are almost indistinguishable. The native state of EQL has three orders of magnitude lower affinity for Ca(2+) in comparison with alpha-LA while its thermally unfolded state (after the I transition) has about one order lower (K = 15M(-1)) affinity for calcium. Circular dichroism studies of the apo-lysozyme state after the first thermal transition show that it shares common features with the molten globule state of alpha-LA.
Address Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1097-0134 ISBN Medium
Area Expedition Conference
Notes PMID:17022083 Approved no
Call Number Serial 1858
Permanent link to this record
 

 
Author Czerlinski, G.H.; Erickson, J.O.; Theorell, H.
Title Chemical relaxation studies on the horse liver alcohol dehydrogenase system Type Journal Article
Year 1979 Publication (down) Physiological Chemistry and Physics Abbreviated Journal Physiol Chem Phys
Volume 11 Issue 6 Pages 537-569
Keywords Alcohol Oxidoreductases/*metabolism; Animals; Buffers; Electron Transport; Ethanol/metabolism; Horses; Hydrogen-Ion Concentration; Liver/*enzymology; Mathematics; NAD/metabolism; Oscillometry; Osmolar Concentration; Temperature; Time Factors
Abstract Chemical relaxation studies on the system horse liver alcohol dehydrogenase, nicotinamide adenine dinucleotide, and ethanol were conducted observing fluorescence changes between 400 and 500 nm. Temperature-jump experiments were performed at pH 6.5, 7.0, 8.0, and 9.0; concentration-jump experiments at pH 9.0. The reciprocal of the slowest relaxation time was found to be linearly dependent upon the enzyme concentration for relatively low enzyme concentrations, as predicted earlier. Use of the wide pH-range necessitated expression of the four apparent dissociation constants of the catalytic reaction cycle in terms of pH-independent constants. The system was described in terms of only one (or two) catalysis-linked protons not associated with the electron transfer. Protonic steps in a buffered system are in rapid equilibrium, too fast to be measured with the equipment available. Assuming only two of the four bimolecular reaction steps in the four-step cycle are fast compared to the remaining two, six cases may be considered with six expressions for the reciprocal of the slowest relaxation time. Comparison with the experimental data revealed that the bimolecular reaction steps governing the slowest relaxation time change with pH. Above the effective time resolution of the temperature-lump instrument with fluorescence detection (0.1 msec) only one other relaxation time was detectable and only at pH 9. This relaxation time, found to be independent of the concentration of all reactants within experimental error (r = 10 +/- 5 msec), is most likely due to an interconversion among ternary complexes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9325 ISBN Medium
Area Expedition Conference
Notes PMID:44918 Approved no
Call Number Equine Behaviour @ team @ Serial 3813
Permanent link to this record
 

 
Author Abbruzzetti, S.; Viappiani, C.; Small, J.R.; Libertini, L.J.; Small, E.W.
Title Kinetics of histidine deligation from the heme in GuHCl-unfolded Fe(III) cytochrome C studied by a laser-induced pH-jump technique Type Journal Article
Year 2001 Publication (down) Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 123 Issue 27 Pages 6649-6653
Keywords Animals; *Bacterial Proteins; Cytochrome c Group/*chemistry; Guanidine/*chemistry; Heme/*chemistry; Histidine/*chemistry; Horses; Hydrogen-Ion Concentration; Kinetics; *Lasers; Ligands; Protein Folding
Abstract We have developed an instrumental setup that uses transient absorption to monitor protein folding/unfolding processes following a laser-induced, ultrafast release of protons from o-nitrobenzaldehyde. The resulting increase in [H(+)], which can be more than 100 microM, is complete within a few nanoseconds. The increase in [H(+)] lowers the pH of the solution from neutrality to approximately 4 at the highest laser pulse energy used. Protein structural rearrangements can be followed by transient absorption, with kinetic monitoring over a broad time range (approximately 10 ns to 500 ms). Using this pH-jump/transient absorption technique, we have examined the dissociation kinetics of non-native axial heme ligands (either histidine His26 or His33) in GuHCl-unfolded Fe(III) cytochrome c (cyt c). Deligation of the non-native ligands following the acidic pH-jump occurs as a biexponential process with different pre-exponential factors. The pre-exponential factors markedly depend on the extent of the pH-jump, as expected from differences in the pK(a) values of His26 and His33. The two lifetimes were found to depend on temperature but were not functions of either the magnitude of the pH-jump or the pre-pulse pH of the solution. The activation energies of the deligation processes support the suggestion that GuHCl-unfolded cyt c structures with non-native histidine axial ligands represent kinetic traps in unfolding.
Address Dipartimento di Fisica, Universita di Parma, Istituto Nazionale per la Fisica della Materia, 43100 Parma, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Medium
Area Expedition Conference
Notes PMID:11439052 Approved no
Call Number Equine Behaviour @ team @ Serial 3788
Permanent link to this record
 

 
Author Hoang, L.; Maity, H.; Krishna, M.M.G.; Lin, Y.; Englander, S.W.
Title Folding units govern the cytochrome c alkaline transition Type Journal Article
Year 2003 Publication (down) Journal of Molecular Biology Abbreviated Journal J Mol Biol
Volume 331 Issue 1 Pages 37-43
Keywords Animals; Cytochrome c Group/*chemistry; Horses; Hydrogen/chemistry; Hydrogen-Ion Concentration; Kinetics; Models, Molecular; *Protein Folding; Protein Structure, Tertiary; Spectrum Analysis; Titrimetry
Abstract The alkaline transition of cytochrome c is a model for protein structural switching in which the normal heme ligand is replaced by another group. Stopped flow data following a jump to high pH detect two slow kinetic phases, suggesting two rate-limiting structure changes. Results described here indicate that these events are controlled by the same structural unfolding reactions that account for the first two steps in the reversible unfolding pathway of cytochrome c. These and other results show that the cooperative folding-unfolding behavior of protein foldons can account for a variety of functional activities in addition to determining folding pathways.
Address Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA. lhoang@mail.upenn.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2836 ISBN Medium
Area Expedition Conference
Notes PMID:12875834 Approved no
Call Number Equine Behaviour @ team @ Serial 3781
Permanent link to this record
 

 
Author Pierce, M.M.; Nall, B.T.
Title Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization Type Journal Article
Year 2000 Publication (down) Journal of Molecular Biology Abbreviated Journal J Mol Biol
Volume 298 Issue 5 Pages 955-969
Keywords Amino Acid Sequence; Amino Acid Substitution/genetics; Binding Sites; Cytochrome c Group/*chemistry/genetics/*metabolism; *Cytochromes c; Enzyme Stability/drug effects; Fluorescence; Guanidine/pharmacology; Heme/*metabolism; Histidine/genetics/*metabolism; Hydrogen-Ion Concentration; Isomerism; Kinetics; Models, Molecular; Molecular Sequence Data; Mutation/genetics; Proline/*chemistry/metabolism; Protein Conformation/drug effects; Protein Denaturation/drug effects; *Protein Folding; Protein Renaturation; Saccharomyces cerevisiae/enzymology/genetics; Sequence Alignment; Thermodynamics
Abstract The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.
Address Center for Biomolecular Structure, Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2836 ISBN Medium
Area Expedition Conference
Notes PMID:10801361 Approved no
Call Number refbase @ user @ Serial 3853
Permanent link to this record