|   | 
Details
   web
Records
Author Hughes, K.L.; Sulaiman, I.
Title The ecology of Rhodococcus equi and physicochemical influences on growth Type Journal Article
Year 1987 Publication Veterinary Microbiology Abbreviated Journal Vet Microbiol
Volume 14 Issue 3 Pages 241-250
Keywords Animals; Feces/microbiology; Horses; Hydrogen-Ion Concentration; Rhodococcus/*growth & development; *Soil Microbiology; Temperature
Abstract (up) Growth of Rhodococcus equi was studied in vitro. Optimal growth occurred under aerobic conditions between pH 7.0 and 8.5, at 30 degrees C. R. equi survived better in a neutral soil (pH 7.3) than it did in two acid soils (pH less than 5.5). It grew substantially better in soils enriched with faeces than in soils alone. Simple organic acids in horse dung, especially acetate and propionate, appear to be important in supporting growth of R. equi in the environment. The ecology of R. equi can be best explained by an environmental cycle allowing its proliferation in dung, influenced by management, grazing behaviour and prevailing climatic conditions. Preventive measures should be aimed at reducing or avoiding focal areas of faecal contamination in the environment.
Address School of Veterinary Science, University of Melbourne, Parkville, Vic., Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-1135 ISBN Medium
Area Expedition Conference
Notes PMID:3672866 Approved no
Call Number Equine Behaviour @ team @ Serial 2678
Permanent link to this record
 

 
Author Saigo, S.
Title A transient spin-state change during alkaline isomerization of ferricytochrome c Type Journal Article
Year 1981 Publication Journal of Biochemistry Abbreviated Journal J Biochem (Tokyo)
Volume 89 Issue 6 Pages 1977-1980
Keywords Animals; *Cytochrome c Group; Horses; Hydrogen-Ion Concentration; Isomerism; Kinetics; Myocardium/enzymology; Oxidation-Reduction; Spectrophotometry
Abstract (up) Kinetic difference spectra during the alkaline isomerization of ferricytochrome c were obtained by the pH-jump method in the range of 540 to 655 nm. The spectrum of the transient intermediate, which appears during the course of the isomerization, was reproduced from the spectra. The intermediate showed an intense absorption band at 600 nm, indicating that it is a high spin or mixed spin species. This is in contrast to the stable neutral and alkaline forms which are low spin species. The transient spin-state change during the isomerization was also observed upon rapid oxidation of ferrocytochrome c at alkaline pH.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-924X ISBN Medium
Area Expedition Conference
Notes PMID:6270075 Approved no
Call Number Equine Behaviour @ team @ Serial 3808
Permanent link to this record
 

 
Author Nicol, C.J.; Davidson, H.P.D.; Harris, P.A.; Waters, A.J.; Wilson, A.D.
Title Study of crib-biting and gastric inflammation and ulceration in young horses Type Journal Article
Year 2002 Publication The Veterinary record Abbreviated Journal Vet. Rec.
Volume 151 Issue 22 Pages 658-662
Keywords Animal Husbandry/methods; Animals; Antacids/therapeutic use; *Behavior, Animal; Diet/veterinary; Endoscopy, Gastrointestinal/veterinary; Feces/chemistry; Female; Gastritis/diet therapy/physiopathology/*veterinary; Horse Diseases/diet therapy/*physiopathology/psychology; Horses; Hydrogen-Ion Concentration; Male; Random Allocation; Stereotyped Behavior/*physiology; Stomach Ulcer/diet therapy/physiopathology/*veterinary; Treatment Outcome; Weaning
Abstract (up) Nineteen young horses that had recently started to perform the stereotypy of crib-biting were compared with 16 non-stereotypic horses for 14 weeks. After initial observations of their behaviour and an endoscopic examination of the condition of their stomachs, the horses were randomly allocated to a control or an antacid diet At the start of the trial, the stomachs of the crib-biting foals were significantly more ulcerated and inflamed than the stomachs of the normal foals. In addition, the faecal pH of the crib-biting foals (6.05) was significantly lower than that of the normal foals (6.58). The antacid diet resulted in a significant improvement in the condition of the horses' stomachs. The crib-biting behaviour declined in most of the foals, regardless of their diet, but tended to decline to a greater extent in the foals on the antacid diet.
Address Department of Clinical Veterinary Science, University of Bristol, Langford House, Bristol BS40 5DU
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-4900 ISBN Medium
Area Expedition Conference
Notes PMID:12498408 Approved no
Call Number refbase @ user @ Serial 83
Permanent link to this record
 

 
Author Czerlinski, G.H.; Wagner, M.; Erickson, J.O.; Theorell, H.
Title Chemical relaxation studies on the system liver alcohol dehydrogenase, NADH and imidazole Type Journal Article
Year 1975 Publication Acta Chemica Scandinavica. Series B: Organic Chemistry and Biochemistry Abbreviated Journal Acta Chem Scand B
Volume 29 Issue 8 Pages 797-810
Keywords Alcohol Oxidoreductases/*metabolism; Animals; Computers; Hydrogen-Ion Concentration; Imidazoles/*metabolism; Kinetics; Liver/enzymology/*metabolism; Mathematics; Models, Chemical; NAD/*metabolism; Time Factors
Abstract (up) Several years ago, Theorell and Czerlinski conducted experiments on the system of horse liver alcohol dehydrogenase, reduced nicotinamide adenine dinucleotide and imidazole, using the first version of the temperature jump apparatus with detection of changes in fluorescence. These early experiments were repeated with improved instrumentation and confirmed the early experiments in general terms. However, the improved detection system allowed to measure a slight concentration dependence of the relaxation time of around 3 ms. Furthermore, the chemical relaxation time was smaller than the one determined earlier (by factor 2). The data were evaluated much more rigorously than before, allowing an appropriate interpretation of the results. The observed relaxation time is largely due to rate constants in an interconversion of ternary complexes, which are faster than three (of the four) dissociation rate constants, determined previously by Theorell and McKinley-McKee.1,2 This fact contributed to earlier difficulties of finding any concentration dependence. However, the binding of imidazole to the binary enzyme-coenzyme complex can be made to couple kinetically into the interconversion rate of the two ternary complexes. The observed signal derives largely from the ternary complex(es). A substantial fluorescence signal change is associated with the observed relaxation process, suggesting a relocation of the imidazole in reference to the nicotinamide moiety of the bound coenzyme. Nine models are considered with two types of coupling of pre-equilibria (none-all). Quantitative evaluations favor the model with two ternary complexes connected by an interconversion outside the four-step (bimolecular) cycle. The ternary complex outside the cycle has much higher fluorescence yield than the one inside. The interconversion equilibrium is near unity for imidazole. If it would be shifted very much to the side of the “dead-end” complex (as in isobutyramide?!), stimulating action could not take place.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0302-4369 ISBN Medium
Area Expedition Conference
Notes PMID:882 Approved no
Call Number refbase @ user @ Serial 3887
Permanent link to this record
 

 
Author Steinhoff, H.J.; Lieutenant, K.; Redhardt, A.
Title Conformational transition of aquomethemoglobin: intramolecular histidine E7 binding reaction to the heme iron in the temperature range between 220 K and 295 K as seen by EPR and temperature-jump measurements Type Journal Article
Year 1989 Publication Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta
Volume 996 Issue 1-2 Pages 49-56
Keywords Animals; Electron Spin Resonance Spectroscopy; Heme; Histidine; Horses; Humans; Hydrogen-Ion Concentration; Methemoglobin/*ultrastructure; Motion; Protein Conformation; Temperature; Thermodynamics; Water
Abstract (up) Temperature-dependent EPR and temperature-jump measurements have been carried out, in order to examine the high-spin to low-spin transition of aquomethemogobin (pH 6.0). Relaxation rates and equilibrium constants could be determined as a function of temperature. As a reaction mechanism for the high-spin to low-spin transition, the binding of N epsilon of His E7 to the heme iron had been proposed; the same mechanism had been suggested for the ms-effect, found in temperature-jump experiments on aquomethemoglobin. A comparison of the thermodynamic quantities, deduced form the measurements in this paper, gives evidence that indeed the same reaction is investigated in both cases. Our results and most of the findings of earlier studies on the spin-state transitions of aquomethemoglobin, using susceptibility, optical, or EPR measurements, can be explained by the transition of methemoglobin with H2O as ligand (with high-spin state at all temperatures) and methemoglobin with ligand N epsilon of His E7 (with a low-spin ground state). Thermal fluctuations of large amplitude have to be postulated for the reaction to take place, so this reaction may be understood as a probe for the study of protein dynamics.
Address Institut fur Biophysik, Ruhr-Universitat Bochum, F.R.G
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3002 ISBN Medium
Area Expedition Conference
Notes PMID:2544230 Approved no
Call Number Equine Behaviour @ team @ Serial 3803
Permanent link to this record
 

 
Author Haruta, N.; Kitagawa, T.
Title Time-resolved UV resonance Raman investigation of protein folding using a rapid mixer: characterization of kinetic folding intermediates of apomyoglobin Type Journal Article
Year 2002 Publication Biochemistry Abbreviated Journal Biochemistry
Volume 41 Issue 21 Pages 6595-6604
Keywords Animals; Apoproteins/*chemistry; Circular Dichroism; Holoenzymes/chemistry; Horses; Hydrochloric Acid/chemistry; Hydrogen-Ion Concentration; Imidazoles/chemistry; Kinetics; Models, Molecular; Myoglobin/*chemistry; Peptide Fragments/chemistry; *Protein Folding; Protein Structure, Secondary; Spectrum Analysis, Raman/*methods; Tryptophan/*chemistry; Ultraviolet Rays; Whales
Abstract (up) The 244-nm excited transient UV resonance Raman spectra are observed for the refolding intermediates of horse apomyoglobin (h-apoMb) with a newly constructed mixed flow cell system, and the results are interpreted on the basis of the spectra observed for the equilibrium acid unfolding of the same protein. The dead time of mixing, which was determined with the appearance of UV Raman bands of imidazolium upon mixing of imidazole with acid, was 150 micros under the flow rate that was adopted. The pH-jump experiments of h-apoMb from pH 2.2 to 5.6 conducted with this device demonstrated the presence of three folding intermediates. On the basis of the analysis of W3 and W7 bands of Trp7 and Trp14, the first intermediate, formed before 250 micros, involved incorporation of Trp14 into the alpha-helix from a random coil. The frequency shift of the W3 band of Trp14 observed for this process was reproduced with a model peptide of the A helix when it forms the alpha-helix. In the second intermediate, formed around 1 ms after the start of refolding, the surroundings of both Trp7 and Trp14 were significantly hydrophobic, suggesting the formation of the hydrophobic core. In the third intermediate appearing around 3 ms, the hydrophobicity was relaxed to the same level as that of the pH 4 equilibrium intermediate, which was investigated in detail with the stationary state technique. The change from the third intermediate to the native state needs more time than 40 ms, while the appearance of the native spectrum after the mixing of the same solutions was confirmed separately.
Address School of Mathematical and Physical Sciences, The Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-2960 ISBN Medium
Area Expedition Conference
Notes PMID:12022863 Approved no
Call Number Equine Behaviour @ team @ Serial 3785
Permanent link to this record
 

 
Author Rodier, F.
Title [Spectral properties of porcine plasminogen: study of the acidic transition (author's transl)] Type Journal Article
Year 1976 Publication European journal of biochemistry / FEBS Abbreviated Journal Eur J Biochem
Volume 63 Issue 2 Pages 553-562
Keywords Animals; Binding Sites; Guanidines; Hydrogen-Ion Concentration; *Plasminogen; Protein Binding; Protein Conformation; Spectrometry, Fluorescence; Spectrophotometry; Spectrophotometry, Ultraviolet; Swine; Temperature
Abstract (up) The acidic transition of porcine plasminogen, prepared by affinity chromatography, was studied by non-destructive methods. These methods are based on the analysis of the behaviour of the tryptophyls under various conditions. The perturbation of the absorption and emission spectra by pH or temperature and the dynamic quenching of the intrinsic fluorescence are used to obtain information on structural changes which affect the environment of these residues. It is shown that by decreasing pH the fluorescence emission spectra are shifted toward the long wavelengths, with a broadening of the fluorescence band. The same effect can be obtained at constant pH by heating the protein solution. In order to analyze these phenomena, it is assumed that the fluorescence intensities at 355 nm and 328 nm reflect the proportion of the tryptophans which are exposed to the solvent, and buried, respectively. The plot of the ratio of the fluorescence intensities at these wavelengths versus pH or temperature leads to a titration curve showing an unmasking of tryptophans. The proportion of exposed tryptophans is measured by the dynamic fluorescence quenching technique and the data analyzed according to Lehrer. The plot of the fraction of exposed tryptophyls versus pH also shows the unmasking of these chromophores. Thermal perturbation of a solution of plaminogen at neutral pH induces a difference absorption spectrum whose amplitudes at the maxima are proportional to the number of exposed aromatic residues. The comparison with a solution of fully denatured plasminogen in 6 M guanidium chloride, where all the tryptophyls are exposed, shows that the percentage of exposure is equal to 59%. This number is significantly higher than the percentage found by the fluorescence quenching technique (20%), indicating that some tryptophyls are located in crevices, exposed to the solvent but not to the iodide. At acidic pH the absorption difference spectra induced by thermal perturbation are not classical, since they show an inversion and a new band between 300 nm and 305 nm. This band is mentioned in the literature as a minor band of tryptophan which appears when this chromophore is located in an asymmetric environment. On plotting the maximum amplitude of these spectra obtained at acidic pH versus temperature, we obtain a curve indicating that two types of antagonistic interactions are involved in the perturbation of the chromophores spectra. The spectrophotometric titration of plasminogen gives classical absorption difference spectra. By plotting the maximum amplitude at 292 nm versus pH, we obtain a titration curve with an apparent pK of 2.9 units. This pK is acidic which respect to the pK value of a normal carboxyl. This low value can be due to a positively charged group in the neighbourhood of a carboxyl, which interacts with one or more chromophores. When the carboxyl becomes protonated, this positively charged group is free and available to perturb the environment of some chromophores...
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language French Summary Language Original Title Proprietes spectrales du plasminogene porcin. Etude de la transition acide
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0014-2956 ISBN Medium
Area Expedition Conference
Notes PMID:4326 Approved no
Call Number Admin @ knut @ Serial 22
Permanent link to this record
 

 
Author Hoang, L.; Maity, H.; Krishna, M.M.G.; Lin, Y.; Englander, S.W.
Title Folding units govern the cytochrome c alkaline transition Type Journal Article
Year 2003 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol
Volume 331 Issue 1 Pages 37-43
Keywords Animals; Cytochrome c Group/*chemistry; Horses; Hydrogen/chemistry; Hydrogen-Ion Concentration; Kinetics; Models, Molecular; *Protein Folding; Protein Structure, Tertiary; Spectrum Analysis; Titrimetry
Abstract (up) The alkaline transition of cytochrome c is a model for protein structural switching in which the normal heme ligand is replaced by another group. Stopped flow data following a jump to high pH detect two slow kinetic phases, suggesting two rate-limiting structure changes. Results described here indicate that these events are controlled by the same structural unfolding reactions that account for the first two steps in the reversible unfolding pathway of cytochrome c. These and other results show that the cooperative folding-unfolding behavior of protein foldons can account for a variety of functional activities in addition to determining folding pathways.
Address Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA. lhoang@mail.upenn.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2836 ISBN Medium
Area Expedition Conference
Notes PMID:12875834 Approved no
Call Number Equine Behaviour @ team @ Serial 3781
Permanent link to this record
 

 
Author Pierce, M.M.; Nall, B.T.
Title Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization Type Journal Article
Year 2000 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol
Volume 298 Issue 5 Pages 955-969
Keywords Amino Acid Sequence; Amino Acid Substitution/genetics; Binding Sites; Cytochrome c Group/*chemistry/genetics/*metabolism; *Cytochromes c; Enzyme Stability/drug effects; Fluorescence; Guanidine/pharmacology; Heme/*metabolism; Histidine/genetics/*metabolism; Hydrogen-Ion Concentration; Isomerism; Kinetics; Models, Molecular; Molecular Sequence Data; Mutation/genetics; Proline/*chemistry/metabolism; Protein Conformation/drug effects; Protein Denaturation/drug effects; *Protein Folding; Protein Renaturation; Saccharomyces cerevisiae/enzymology/genetics; Sequence Alignment; Thermodynamics
Abstract (up) The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.
Address Center for Biomolecular Structure, Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2836 ISBN Medium
Area Expedition Conference
Notes PMID:10801361 Approved no
Call Number refbase @ user @ Serial 3853
Permanent link to this record
 

 
Author Wilson, M.T.; Ranson, R.J.; Masiakowski, P.; Czarnecka, E.; Brunori, M.
Title A kinetic study of the pH-dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase) Type Journal Article
Year 1977 Publication European Journal of Biochemistry / FEBS Abbreviated Journal Eur J Biochem
Volume 77 Issue 1 Pages 193-199
Keywords Animals; Cyanides; *Cytochrome c Group/metabolism; Ferric Compounds; Horses; Hydrogen-Ion Concentration; Imidazoles; Kinetics; Mathematics; Myocardium/enzymology; *Oligopeptides/metabolism; *Peptide Fragments/metabolism; Protein Binding; Spectrophotometry; Temperature
Abstract (up) The ferric form of the haem undecapeptide, derived from horse cytochrome c by peptic digestion, undergoes at least three pH-induced transitions with pK values of 3.4, 5.8 and 7.6. Temperature-jump experiments suggest that the first of these is due to the binding of a deprotonated imidazole group to the feric iron while the second and third arise from the binding of the two available amino groups present (the alpha-NH2 of valine and the epsilon-NH2 of lysine). Molecular models indicate that steric retraints on the peptide dictate that these amino groups may only coordinate to iron atoms via intermolecular bonds, thus leading to the polymerization of the peptide. Cyanide binding studies are in agreement with these conclusions and also yield a value of 3.6 X 10(6) M-1 s-1 for the intrinsic combination constant of CN- anion with the haem. A model is proposed which describes the pH-dependent properties of the ferric undecapeptide.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0014-2956 ISBN Medium
Area Expedition Conference
Notes PMID:20304 Approved no
Call Number Equine Behaviour @ team @ Serial 3814
Permanent link to this record