toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hillidge, C.J.; Lees, P. openurl 
  Title Cardiac output in the conscious and anaesthetised horse Type Journal Article
  Year 1975 Publication Equine veterinary journal Abbreviated Journal (up) Equine Vet J  
  Volume 7 Issue 1 Pages 16-21  
  Keywords Anesthesia, Inhalation/*veterinary; Animals; Carbon Dioxide/blood; *Cardiac Output/veterinary; *Consciousness; Electrocardiography/veterinary; Ether, Ethyl; Female; Halothane; Heart Rate; Heart Ventricles/physiology; Horses/*physiology; Hydrogen-Ion Concentration; Male; Oxygen/blood; Posture  
  Abstract Cardiac output in the horse was measured before and at predetermined times during 2-hour periods of thiopentone-halothane and thiopentone-diethyl ether anaesthesia. Left ventricular stroke volume was decreased to a similar extent during anaesthesia with each volatile agent, but a greater reduction in cardiac output occurred during halothane anaesthesia. This finding reflected the differing effects of halothane and ether on heart rate, a slight bradycardia occurring with the former agent while ether produced a small degree of tachycardia. The latter effect was attributed to enhanced sympathoadrenal activity. Changes in cardiac output and stroke volume were considered in relation to other factors, including arterial blood pH and tensions of oxygen and carbon dioxide. Positive correlations between some of these variables and cardiac function were established. With both volatile agents the reductions in stroke volume and cardiac output were related to the duration of anaesthesia, being greatest during the early stages. Possible reasons for the tendency of stroke volume and cardiac output to return towards control levels are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:234842 Approved no  
  Call Number refbase @ user @ Serial 102  
Permanent link to this record
 

 
Author Jablonska, E.M.; Ziolkowska, S.M.; Gill, J.; Szykula, R.; Faff, J. openurl 
  Title Changes in some haematological and metabolic indices in young horses during the first year of jump-training Type Journal Article
  Year 1991 Publication Equine Veterinary Journal Abbreviated Journal (up) Equine Vet J  
  Volume 23 Issue 4 Pages 309-311  
  Keywords Alanine Transaminase/blood; Animals; Bicarbonates/blood; Blood Glucose/analysis; Blood Proteins/analysis; Breeding; Carbon Dioxide/blood; Exercise Test/veterinary; Fatty Acids, Nonesterified/blood; Female; Fructose-Bisphosphate Aldolase/blood; Hematocrit/veterinary; Hemoglobins/analysis; Horses/*blood/metabolism; Hydrogen-Ion Concentration; Lactates/blood; Male; Oxygen/blood; *Physical Conditioning, Animal; Pyruvates/blood  
  Abstract Effects of an 18 min exercise test, on three separate occasions during a one year jump-training programme, was studied in seven horses. Determinations were carried out on venous blood for packed cell volume, haemoglobin, total protein, lactate and pyruvate, glucose, free fatty acids, insulin, glucagon, blood gases, bicarbonate, pH, aldolase, aspartate aminotransferase and alanine amino-transferase. Exercise caused a slight increase in lactate and pyruvate, total protein, aldolase, alanine aminotransferase, pO2, bicarbonate and pH. Glucose, free fatty acids and pCO2 levels decreased. Training caused no significant difference in these changes. However, during the year, increases in lactate and decreases in pH (resting levels) were observed.  
  Address Department of Vertebrate Animal Physiology, Warszawa, Poland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1915234 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3801  
Permanent link to this record
 

 
Author Hinchcliff, K.W.; Kohn, C.W.; Geor, R.; McCutcheon, L.J.; Foreman, J.; Andrews, F.M.; Allen, A.K.; White, S.L.; Williamson, L.H.; Maykuth, P.L. openurl 
  Title Acid:base and serum biochemistry changes in horses competing at a modified 1 Star 3-day-event Type Journal Article
  Year 1995 Publication Equine Veterinary Journal. Supplement Abbreviated Journal (up) Equine Vet J Suppl  
  Volume Issue 20 Pages 105-110  
  Keywords *Acid-Base Equilibrium; Animals; Blood Proteins/analysis; Body Water/metabolism; Carbon Dioxide/blood; Electrolytes/*blood; Female; Hematocrit/veterinary; Homeostasis; Horses/*blood/physiology; Hydrogen-Ion Concentration; Male; Physical Conditioning, Animal/*physiology  
  Abstract We examined the effects of participation in each of 3 modifications of Day 2 of a 3-day-event on blood and serum variables indicative of hydration, acid:base status and electrolyte homeostasis of horses. Three groups of horses – 8 European (E) horses and 2 groups each of 9 North American horses performed identical Days 1 (dressage) and 3 (stadium jumping) of a 3-day-event. E horses and one group of the North American horses (TD) performed modifications of Day 2 of a 1 Star 3-day-event and the other group of North American horses (HT) performed a Horse Trial on Day 2. Jugular venous blood was collected from each horse on the morning of Day 2 before any warm-up activity, between 4 min 55 s and 5 min 15 s after Phase D and the following morning. Eight E horses, 5 TD horses and 8 HT horses completed the trials. There were few significant differences in acid:base or serum biochemistry variables detected among horses performing either 2 variations of the Speed and Endurance day of a 1 Star 3-day-event, or a conventional Horse Trial. Failure to detect differences among groups may have been related to the low statistical power associated with the small number of horses, especially in the TD group, variation in quality of horses among groups and the different times of the day at which the E horses competed. Differences detected among time points were usually common to all groups and demonstrated metabolic acidosis with a compensatory respiratory alkalosis, a reduction in total body water and cation content, and hypocalcaemia. Importantly, horses of all groups did not replenish cation, chloride, and calcium deficits after 14-18 h of recovery.  
  Address Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus 43210-1089, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8933092 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3740  
Permanent link to this record
 

 
Author Rodier, F. openurl 
  Title [Spectral properties of porcine plasminogen: study of the acidic transition (author's transl)] Type Journal Article
  Year 1976 Publication European journal of biochemistry / FEBS Abbreviated Journal (up) Eur J Biochem  
  Volume 63 Issue 2 Pages 553-562  
  Keywords Animals; Binding Sites; Guanidines; Hydrogen-Ion Concentration; *Plasminogen; Protein Binding; Protein Conformation; Spectrometry, Fluorescence; Spectrophotometry; Spectrophotometry, Ultraviolet; Swine; Temperature  
  Abstract The acidic transition of porcine plasminogen, prepared by affinity chromatography, was studied by non-destructive methods. These methods are based on the analysis of the behaviour of the tryptophyls under various conditions. The perturbation of the absorption and emission spectra by pH or temperature and the dynamic quenching of the intrinsic fluorescence are used to obtain information on structural changes which affect the environment of these residues. It is shown that by decreasing pH the fluorescence emission spectra are shifted toward the long wavelengths, with a broadening of the fluorescence band. The same effect can be obtained at constant pH by heating the protein solution. In order to analyze these phenomena, it is assumed that the fluorescence intensities at 355 nm and 328 nm reflect the proportion of the tryptophans which are exposed to the solvent, and buried, respectively. The plot of the ratio of the fluorescence intensities at these wavelengths versus pH or temperature leads to a titration curve showing an unmasking of tryptophans. The proportion of exposed tryptophans is measured by the dynamic fluorescence quenching technique and the data analyzed according to Lehrer. The plot of the fraction of exposed tryptophyls versus pH also shows the unmasking of these chromophores. Thermal perturbation of a solution of plaminogen at neutral pH induces a difference absorption spectrum whose amplitudes at the maxima are proportional to the number of exposed aromatic residues. The comparison with a solution of fully denatured plasminogen in 6 M guanidium chloride, where all the tryptophyls are exposed, shows that the percentage of exposure is equal to 59%. This number is significantly higher than the percentage found by the fluorescence quenching technique (20%), indicating that some tryptophyls are located in crevices, exposed to the solvent but not to the iodide. At acidic pH the absorption difference spectra induced by thermal perturbation are not classical, since they show an inversion and a new band between 300 nm and 305 nm. This band is mentioned in the literature as a minor band of tryptophan which appears when this chromophore is located in an asymmetric environment. On plotting the maximum amplitude of these spectra obtained at acidic pH versus temperature, we obtain a curve indicating that two types of antagonistic interactions are involved in the perturbation of the chromophores spectra. The spectrophotometric titration of plasminogen gives classical absorption difference spectra. By plotting the maximum amplitude at 292 nm versus pH, we obtain a titration curve with an apparent pK of 2.9 units. This pK is acidic which respect to the pK value of a normal carboxyl. This low value can be due to a positively charged group in the neighbourhood of a carboxyl, which interacts with one or more chromophores. When the carboxyl becomes protonated, this positively charged group is free and available to perturb the environment of some chromophores...  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language French Summary Language Original Title Proprietes spectrales du plasminogene porcin. Etude de la transition acide  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:4326 Approved no  
  Call Number Admin @ knut @ Serial 22  
Permanent link to this record
 

 
Author Andersson, P.; Kvassman, J.; Lindstrom, A.; Olden, B.; Pettersson, G. openurl 
  Title Effect of NADH on the pKa of zinc-bound water in liver alcohol dehydrogenase Type Journal Article
  Year 1981 Publication European Journal of Biochemistry / FEBS Abbreviated Journal (up) Eur J Biochem  
  Volume 113 Issue 3 Pages 425-433  
  Keywords Alcohol Oxidoreductases/*metabolism; Aldehydes/metabolism; Animals; Binding Sites; Cinnamates/metabolism; Horses; Hydrogen-Ion Concentration; Kinetics; Ligands; Liver/*metabolism; NAD/*metabolism; Water/metabolism; Zinc/metabolism  
  Abstract Equilibrium constants for coenzyme binding to liver alcohol dehydrogenase have been determined over the pH range 10--12 by pH-jump stop-flow techniques. The binding of NADH or NAD+ requires the protonated form of an ionizing group (distinct from zinc-bound water) with a pKa of 10.4. Complex formation with NADH exhibits an additional dependence on the protonation state of an ionizing group with a pKa of 11.2. The binding of trans-N,N-dimethylaminocinnamaldehyde to the enzyme . NADH complex is prevented by ionization of the latter group. It is concluded from these results that the pKa-11.2-dependence of NADH binding most likely derives from ionization of the water molecule bound at the catalytic zinc ion of the enzyme subunit. The pKa value of 11.2 thus assigned to zinc-bound water in the enzyme . NADH complex appears to be typical for an aquo ligand in the inner-sphere ligand field provided by the zinc-binding amino acid residues in liver alcohol dehydrogenase. This means that the pKa of metal-bound water in zinc-containing enzymes can be assumed to correlate primarily with the number of negatively charged protein ligands coordinated by the active-site zinc ion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:7011796 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3810  
Permanent link to this record
 

 
Author Wilson, M.T.; Ranson, R.J.; Masiakowski, P.; Czarnecka, E.; Brunori, M. openurl 
  Title A kinetic study of the pH-dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase) Type Journal Article
  Year 1977 Publication European Journal of Biochemistry / FEBS Abbreviated Journal (up) Eur J Biochem  
  Volume 77 Issue 1 Pages 193-199  
  Keywords Animals; Cyanides; *Cytochrome c Group/metabolism; Ferric Compounds; Horses; Hydrogen-Ion Concentration; Imidazoles; Kinetics; Mathematics; Myocardium/enzymology; *Oligopeptides/metabolism; *Peptide Fragments/metabolism; Protein Binding; Spectrophotometry; Temperature  
  Abstract The ferric form of the haem undecapeptide, derived from horse cytochrome c by peptic digestion, undergoes at least three pH-induced transitions with pK values of 3.4, 5.8 and 7.6. Temperature-jump experiments suggest that the first of these is due to the binding of a deprotonated imidazole group to the feric iron while the second and third arise from the binding of the two available amino groups present (the alpha-NH2 of valine and the epsilon-NH2 of lysine). Molecular models indicate that steric retraints on the peptide dictate that these amino groups may only coordinate to iron atoms via intermolecular bonds, thus leading to the polymerization of the peptide. Cyanide binding studies are in agreement with these conclusions and also yield a value of 3.6 X 10(6) M-1 s-1 for the intrinsic combination constant of CN- anion with the haem. A model is proposed which describes the pH-dependent properties of the ferric undecapeptide.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20304 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3814  
Permanent link to this record
 

 
Author Abbruzzetti, S.; Viappiani, C.; Small, J.R.; Libertini, L.J.; Small, E.W. openurl 
  Title Kinetics of histidine deligation from the heme in GuHCl-unfolded Fe(III) cytochrome C studied by a laser-induced pH-jump technique Type Journal Article
  Year 2001 Publication Journal of the American Chemical Society Abbreviated Journal (up) J Am Chem Soc  
  Volume 123 Issue 27 Pages 6649-6653  
  Keywords Animals; *Bacterial Proteins; Cytochrome c Group/*chemistry; Guanidine/*chemistry; Heme/*chemistry; Histidine/*chemistry; Horses; Hydrogen-Ion Concentration; Kinetics; *Lasers; Ligands; Protein Folding  
  Abstract We have developed an instrumental setup that uses transient absorption to monitor protein folding/unfolding processes following a laser-induced, ultrafast release of protons from o-nitrobenzaldehyde. The resulting increase in [H(+)], which can be more than 100 microM, is complete within a few nanoseconds. The increase in [H(+)] lowers the pH of the solution from neutrality to approximately 4 at the highest laser pulse energy used. Protein structural rearrangements can be followed by transient absorption, with kinetic monitoring over a broad time range (approximately 10 ns to 500 ms). Using this pH-jump/transient absorption technique, we have examined the dissociation kinetics of non-native axial heme ligands (either histidine His26 or His33) in GuHCl-unfolded Fe(III) cytochrome c (cyt c). Deligation of the non-native ligands following the acidic pH-jump occurs as a biexponential process with different pre-exponential factors. The pre-exponential factors markedly depend on the extent of the pH-jump, as expected from differences in the pK(a) values of His26 and His33. The two lifetimes were found to depend on temperature but were not functions of either the magnitude of the pH-jump or the pre-pulse pH of the solution. The activation energies of the deligation processes support the suggestion that GuHCl-unfolded cyt c structures with non-native histidine axial ligands represent kinetic traps in unfolding.  
  Address Dipartimento di Fisica, Universita di Parma, Istituto Nazionale per la Fisica della Materia, 43100 Parma, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11439052 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3788  
Permanent link to this record
 

 
Author Saigo, S. openurl 
  Title A transient spin-state change during alkaline isomerization of ferricytochrome c Type Journal Article
  Year 1981 Publication Journal of Biochemistry Abbreviated Journal (up) J Biochem (Tokyo)  
  Volume 89 Issue 6 Pages 1977-1980  
  Keywords Animals; *Cytochrome c Group; Horses; Hydrogen-Ion Concentration; Isomerism; Kinetics; Myocardium/enzymology; Oxidation-Reduction; Spectrophotometry  
  Abstract Kinetic difference spectra during the alkaline isomerization of ferricytochrome c were obtained by the pH-jump method in the range of 540 to 655 nm. The spectrum of the transient intermediate, which appears during the course of the isomerization, was reproduced from the spectra. The intermediate showed an intense absorption band at 600 nm, indicating that it is a high spin or mixed spin species. This is in contrast to the stable neutral and alkaline forms which are low spin species. The transient spin-state change during the isomerization was also observed upon rapid oxidation of ferrocytochrome c at alkaline pH.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-924X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:6270075 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3808  
Permanent link to this record
 

 
Author Dyson, H.J.; Beattie, J.K. openurl 
  Title Spin state and unfolding equilibria of ferricytochrome c in acidic solutions Type Journal Article
  Year 1982 Publication The Journal of Biological Chemistry Abbreviated Journal (up) J Biol Chem  
  Volume 257 Issue 5 Pages 2267-2273  
  Keywords Animals; *Cytochrome c Group; Electron Spin Resonance Spectroscopy; Heme; Horses; Hydrogen-Ion Concentration; Kinetics; Ligands; Myocardium; Protein Binding; Protein Conformation; Spectrophotometry; Temperature  
  Abstract Equilibrium, stopped flow, and temperature-jump spectrophotometry have been used to identify processes in the unfolding of ferricytochrome c in acidic aqueous solutions. A relaxation occurring in approximately 100 microseconds involves perturbation of a spin-equilibrium between two folded conformers of the protein with methionine-80 coordinated or dissociated from the heme iron. The protein unfolds more slowly, in milliseconds, with dissociation and protonation of histidine-18. These two transitions appear cooperative in equilibrium measurements at low (0.01 M) ionic strength, but are separated at higher (0.10 M) ionic strength. They are resolved under both conditions in the dynamic measurements. The spin-equilibrium description permits a unified explanation of a number of properties of ferricytochrome c in acidic aqueous solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9258 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:6277891 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3807  
Permanent link to this record
 

 
Author Hoang, L.; Maity, H.; Krishna, M.M.G.; Lin, Y.; Englander, S.W. openurl 
  Title Folding units govern the cytochrome c alkaline transition Type Journal Article
  Year 2003 Publication Journal of Molecular Biology Abbreviated Journal (up) J Mol Biol  
  Volume 331 Issue 1 Pages 37-43  
  Keywords Animals; Cytochrome c Group/*chemistry; Horses; Hydrogen/chemistry; Hydrogen-Ion Concentration; Kinetics; Models, Molecular; *Protein Folding; Protein Structure, Tertiary; Spectrum Analysis; Titrimetry  
  Abstract The alkaline transition of cytochrome c is a model for protein structural switching in which the normal heme ligand is replaced by another group. Stopped flow data following a jump to high pH detect two slow kinetic phases, suggesting two rate-limiting structure changes. Results described here indicate that these events are controlled by the same structural unfolding reactions that account for the first two steps in the reversible unfolding pathway of cytochrome c. These and other results show that the cooperative folding-unfolding behavior of protein foldons can account for a variety of functional activities in addition to determining folding pathways.  
  Address Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA. lhoang@mail.upenn.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12875834 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3781  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print