|   | 
Details
   web
Records
Author (up) Spadavecchia, C.; Arendt-Nielsen, L.; Andersen, O.K.; Spadavecchia, L.; Doherr, M.; Schatzmann, U.
Title Comparison of nociceptive withdrawal reflexes and recruitment curves between the forelimbs and hind limbs in conscious horses Type Journal Article
Year 2003 Publication American journal of veterinary research Abbreviated Journal Am J Vet Res
Volume 64 Issue 6 Pages 700-707
Keywords Animals; Consciousness; Female; Forelimb/*physiology; Hindlimb/*physiology; Horses/*physiology; Male; Nociceptors/physiology; Pain/*physiopathology/*veterinary; Pain Threshold/physiology; Recruitment, Neurophysiological/physiology; Reflex/*physiology
Abstract OBJECTIVE: To compare nociceptive withdrawal reflexes (NWRs) evoked from the distal aspect of the left forelimb and hind limb in conscious standing horses and to investigate NWR recruitment for graded electrical stimulation intensities. ANIMALS: 20 adult horses. PROCEDURE: Surface electromyographic (EMG) activity evoked by transcutaneous electrical stimulation of the digital palmar (or plantar) nerve was recorded from the common digital extensor and cranial tibial muscles. Stimuli consisted of 25-millisecond train-of-5 constant current pulses. Current intensity was gradually increased until NWR threshold intensity was reached. The EMG signal was analyzed for quantification of the NWR. Behavioral responses accompanying the reflex were scored (scale, 0 to 5). The NWR recruitment curves were determined at 0.9, 1.1, 1.2, and 1.3 times the NWR threshold intensity. RESULTS: The NWR threshold was significantly higher for the hind limb (median value, 6.6 mA; range, 3 to 10 mA) than the forelimb (median, 3 mA; range, 1.7 to 5.5 mA). The NWR of the hind limb had a significantly longer latency (median, 122.8 milliseconds; range, 106 to 172 milliseconds), compared with the forelimb (median, 98 milliseconds; range, 86 to 137 milliseconds), and it was associated with significantly stronger behavioral reactions. Gradual increase of NWR amplitude was evident at increasing stimulation intensities and supported by the behavioral observations. CONCLUSIONS AND CLINICAL RELEVANCE: We documented NWRs evoked from the forelimb and hind limb and their recruitment with stimuli of increasing intensity in horses. These results provide a basis for use of NWRs in studies on nociceptive modulation in horses.
Address Department of Clinical Veterinary Sciences, University of Berne, Switzerland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9645 ISBN Medium
Area Expedition Conference
Notes PMID:12828255 Approved no
Call Number refbase @ user @ Serial 93
Permanent link to this record
 

 
Author (up) Weishaupt, M.A.; Wiestner, T.; von Peinen, K.; Waldern, N.; Roepstorff, L.; van Weeren, R.; Meyer, H.; Johnston, C.
Title Effect of head and neck position on vertical ground reaction forces and interlimb coordination in the dressage horse ridden at walk and trot on a treadmill Type Journal Article
Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 36 Pages 387-392
Keywords Animals; Biomechanics; Exercise Test/instrumentation/methods/*veterinary; Forelimb/physiology; Gait; Head/physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Male; Neck/physiology; Physical Conditioning, Animal/methods/*physiology; Posture; Statistics, Nonparametric; Walking/*physiology
Abstract REASONS FOR PERFORMING STUDY: Little is known in quantitative terms about the influence of different head-neck positions (HNPs) on the loading pattern of the locomotor apparatus. Therefore it is difficult to predict whether a specific riding technique is beneficial for the horse or if it may increase the risk for injury. OBJECTIVE: To improve the understanding of forelimb-hindlimb balance and its underlying temporal changes in relation to different head and neck positions. METHODS: Vertical ground reaction force and time parameters of each limb were measured in 7 high level dressage horses while being ridden at walk and trot on an instrumented treadmill in 6 predetermined HNPs: HNP1 – free, unrestrained with loose reins; HNP2 – neck raised, bridge of the nose in front of the vertical; HNP3 – neck raised, bridge of the nose behind the vertical; HNP4 – neck lowered and flexed, bridge of the nose considerably behind the vertical; HNP5 – neck extremely elevated and bridge of the nose considerably in front of the vertical; HNP6 – neck and head extended forward and downward. Positions were judged by a qualified dressage judge. HNPs were assessed by comparing the data to a velocity-matched reference HNP (HNP2). Differences were tested using paired t test or Wilcoxon signed rank test (P<0.05). RESULTS: At the walk, stride duration and overreach distance increased in HNP1, but decreased in HNP3 and HNP5. Stride impulse was shifted to the forehand in HNP1 and HNP6, but shifted to the hindquarters in HNP5. At the trot, stride duration increased in HNP4 and HNP5. Overreach distance was shorter in HNP4. Stride impulse shifted to the hindquarters in HNP5. In HNP1 peak forces decreased in the forelimbs; in HNP5 peak forces increased in fore- and hindlimbs. CONCLUSIONS: HNP5 had the biggest impact on limb timing and load distribution and behaved inversely to HNP1 and HNP6. Shortening of forelimb stance duration in HNP5 increased peak forces although the percentage of stride impulse carried by the forelimbs decreased. POTENTIAL RELEVANCE: An extremely high HNP affects functionality much more than an extremely low neck.
Address Equine Hospital, University of Zurich, CH-8057 Zurich, Switzerland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:17402453 Approved no
Call Number Equine Behaviour @ team @ Serial 3704
Permanent link to this record
 

 
Author (up) Witte, T.H.; Knill, K.; Wilson, A.M.
Title Determination of peak vertical ground reaction force from duty factor in the horse (Equus caballus) Type Journal Article
Year 2004 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 207 Issue Pt 21 Pages 3639-3648
Keywords *Acceleration; Animals; Biomechanics; Forelimb/physiology; *Gait; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Telemetry; Time Factors
Abstract Measurement of peak vertical ground reaction force (GRFz) from multiple limbs simultaneously during high-speed, over-ground locomotion would enhance our understanding of the locomotor mechanics of cursorial animals. Here, we evaluate the accuracy of predicting peak GRFz from duty factor (the proportion of the stride for which the limb is in contact with the ground). Foot-mounted uniaxial accelerometers, combined with UHF FM telemetry, are shown to be practical and accurate for the field measurement of stride timing variables, including duty factor. Direct comparison with the force plate produces a mean error of 2.3 ms and 3.5 ms for the timing of foot on and foot off, respectively, across all gaits. Predictions of peak GRFz from duty factor show mean errors (with positive values indicating an overestimate) of 0.8+/-0.04 N kg(-1) (13%; N=42; mean +/- S.E.M.) at walk, -0.3+/-0.06 N kg(-1) (3%; N=75) at trot, -2.3+/-0.27 N kg(-1) (16%; N=18) for the non-lead limb at canter and +2.1+/-0.7 N kg(-1) (19%; N=9) for the lead limb at canter. The substantial over- and underestimate seen at canter, in the lead and non-lead limbs, respectively, is attributed to the different functions performed by the two limbs in the asymmetrical gaits. The difference in load experienced by the lead and non-lead limbs decreased with increasing speed.
Address Structure and Motion Lab, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:15371472 Approved no
Call Number Equine Behaviour @ team @ Serial 3658
Permanent link to this record