|   | 
Details
   web
Records
Author Overli, O.; Sorensen, C.; Pulman, K.G.T.; Pottinger, T.G.; Korzan, W.; Summers, C.H.; Nilsson, G.E.
Title Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates Type Journal Article
Year 2007 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev
Volume 31 Issue 3 Pages 396-412
Keywords Adaptation, Psychological/*physiology; Animals; Behavior, Animal/*physiology; Biogenic Monoamines/physiology; Brain/physiology; Cognition/*physiology; Evolution; Glucocorticoids/*physiology; Individuality; Lizards; Oncorhynchus mykiss; Social Dominance; Stress, Psychological/*psychology
Abstract Reactions to stress vary between individuals, and physiological and behavioral responses tend to be associated in distinct suites of correlated traits, often termed stress-coping styles. In mammals, individuals exhibiting divergent stress-coping styles also appear to exhibit intrinsic differences in cognitive processing. A connection between physiology, behavior, and cognition was also recently demonstrated in strains of rainbow trout (Oncorhynchus mykiss) selected for consistently high or low cortisol responses to stress. The low-responsive (LR) strain display longer retention of a conditioned response, and tend to show proactive behaviors such as enhanced aggression, social dominance, and rapid resumption of feed intake after stress. Differences in brain monoamine neurochemistry have also been reported in these lines. In comparative studies, experiments with the lizard Anolis carolinensis reveal connections between monoaminergic activity in limbic structures, proactive behavior in novel environments, and the establishment of social status via agonistic behavior. Together these observations suggest that within-species diversity of physiological, behavioral and cognitive correlates of stress responsiveness is maintained by natural selection throughout the vertebrate sub-phylum.
Address Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 As, Norway. oyvind.overli@umb.no
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0149-7634 ISBN Medium
Area Expedition Conference
Notes PMID:17182101 Approved no
Call Number Equine Behaviour @ team @ Serial 2801
Permanent link to this record
 

 
Author Heistermann, M.; Palme, R.; Ganswindt, A.
Title Comparison of different enzyme-immunoassays for assessment of adrenocortical activity in primates based on fecal analysis Type Journal Article
Year 2006 Publication American journal of primatology Abbreviated Journal Am. J. Primatol.
Volume 68 Issue 3 Pages 257-273
Keywords 11-Hydroxycorticosteroids/*analysis; Adrenocorticotropic Hormone/pharmacology; Anesthesia; Animals; Corticosterone/analysis; Feces/*chemistry; Glucocorticoids/*analysis; Haplorhini/*metabolism; Hydrocortisone/analysis; Hypothalamo-Hypophyseal System/drug effects/physiology; Immunoenzyme Techniques/*methods; Pituitary-Adrenal System/drug effects/physiology; Species Specificity
Abstract Most studies published to date that used fecal glucocorticoid measurements to assess adrenocortical activity in primate (and many nonprimate) species applied a specific cortisol or corticosterone assay. However, since these native glucocorticoids are virtually absent in the feces of most vertebrates, including primates, the validity of this approach has recently been questioned. Therefore, the overall aim of the present study was to assess the validity of four enzyme-immunoassays (EIAs) using antibodies raised against cortisol, corticosterone, and reduced cortisol metabolites (two group-specific antibodies) for assessing adrenocortical activity using fecal glucocorticoid metabolite (GCM) measurements in selected primate species (marmoset, long-tailed macaque, Barbary macaque, chimpanzee, and gorilla). Using physiological stimulation of the hypothalamo-pituitary-adrenocortical (HPA) axis by administering exogenous ACTH or anesthesia, we demonstrated that at least two assays detected the predicted increase in fecal GCM levels in response to treatment in each species. However, the magnitude of response varied between assays and species, and no one assay was applicable to all species. While the corticosterone assay generally was of only limited suitability for assessing glucocorticoid output, the specific cortisol assay was valuable for those species that (according to high-performance liquid chromatography (HPLC) analysis data) excreted clearly detectable amounts of authentic cortisol into the feces. In contrast, in species in which cortisol was virtually absent in the feces, group-specific assays provided a much stronger signal, and these assays also performed well in the other primate species tested (except the marmoset). Collectively, the data suggest that the reliability of a given fecal glucocorticoid assay in reflecting activity of the HPA axis in primates clearly depends on the species in question. Although to date there is no single assay system that can be used successfully across species, our data suggest that group-specific assays have a high potential for cross-species application. Nevertheless, regardless of which GC antibody is chosen, our study clearly reinforces the necessity of appropriately validating the respective assay system before it is used.
Address Department of Reproductive Biology, German Primate Center, Gottingen, Germany. mheiste@gwdg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0275-2565 ISBN Medium
Area Expedition Conference
Notes PMID:16477600 Approved no
Call Number Equine Behaviour @ team @ Serial 4078
Permanent link to this record
 

 
Author Reyna-Garfias, H.; Miliar, A.; Jarillo-Luna, A.; Rivera-Aguilar, V.; Pacheco-Yepez, J.; Baeza, I.; Campos-Rodríguez, R.
Title Repeated restraint stress increases IgA concentration in rat small intestine Type Journal Article
Year 2010 Publication Brain, Behavior, and Immunity Abbreviated Journal
Volume 24 Issue 1 Pages 110-118
Keywords Restraint-stress; IgA; Small intestine; Polymeric Ig receptor; Catecholamines; Glucocorticoids
Abstract The most abundant intestinal immunoglobulin and first line of specific immunological defense against environmental antigens is secretory immunoglobulin A. To better understand the effect of repeated stress on the secretion of intestinal IgA, the effects of restraint stress on IgA concentration and mRNA expression of the gene for the alpha-chain of IgA was assessed in both the duodenum and ileum of the rats. Restraint stress induced an increase in intestinal IgA, which was blocked by an adrenalectomy, suggesting a role of catecholamines and glucocorticoids. Whereas the blocking of glucocorticoid receptors by RU-486 did not affect the increased IgA concentration, it did reduce IgA alpha-chain mRNA expression in both segments, indicating a possible mediation on the part of glucocorticoids in IgA secretion by individual cells. Treatment with corticosterone significantly increased both the IgA concentration and IgA alpha-chain mRNA expression in ileum but not in duodenum, suggesting that glucocorticoids may act directly on IgA-antibody forming cells to increase IgA secretion in the former segment. A probable role by catecholamines was evidenced by the reduction in IgA concentration and IgA alpha-chain mRNA expression in both segments after a chemical sympathectomy with 6-hydroxydopamine (6-OHDA). Additionally, norepinephrine significantly reduced IgA alpha-chain mRNA levels but increased pIgR mRNA expression and IgA concentration in both intestinal segments. We propose that the increased intestinal IgA levels caused by repeated restraint stress is likely due to the effects of catecholamines on the transport of plgA across the epithelium.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0889-1591 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6002
Permanent link to this record
 

 
Author Keay, J.M.; Singh, J.; Gaunt, M.C.; Kaur, T.
Title Fecal glucocorticoids and their metabolites as indicators of stress in various mammalian species: a literature review Type Journal Article
Year 2006 Publication Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians Abbreviated Journal J Zoo Wildl Med
Volume 37 Issue 3 Pages 234-244
Keywords Animals; *Animals, Wild/metabolism; Chromatography, High Pressure Liquid/methods/veterinary; Circadian Rhythm; Conservation of Natural Resources; *Ecosystem; Feces/*chemistry; Glucocorticoids/*analysis/metabolism; Humans; Seasons; Species Specificity; Specimen Handling/methods/veterinary; Stress, Psychological/*metabolism
Abstract Conservation medicine is a discipline in which researchers and conservationists study and respond to the dynamic interplay between animals, humans, and the environment. From a wildlife perspective, animal species are encountering stressors from numerous sources. With the rapidly increasing human population, a corresponding increased demand for food, fuel, and shelter; habitat destruction; and increased competition for natural resources, the health and well-being of wild animal populations is increasingly at risk of disease and endangerment. Scientific data are needed to measure the impact that human encroachment is having on wildlife. Nonbiased biometric data provide a means to measure the amount of stress being imposed on animals from humans, the environment, and other animals. The stress response in animals functions via glucocorticoid metabolism and is regulated by the hypothalamic-pituitary-adrenal axis. Fecal glucocorticoids, in particular, may be an extremely useful biometric test, since sample collection is noninvasive to subjects and, therefore, does not introduce other variables that may alter assay results. For this reason, many researchers and conservationists have begun to use fecal glucocorticoids as a means to measure stress in various animal species. This review article summarizes the literature on many studies in which fecal glucocorticoids and their metabolites have been used to assess stress levels in various mammalian species. Variations between studies are the main focus of this review. Collection methods, storage conditions, shipping procedures, and laboratory techniques utilized by different researchers are discussed.
Address Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, 0442 Duck Pond Drive, Blacksburg, Virginia 24061, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1042-7260 ISBN Medium
Area Expedition Conference
Notes PMID:17319120 Approved no
Call Number refbase @ user @ Serial 616
Permanent link to this record