|   | 
Details
   web
Records
Author Meershoek, L.S.; Schamhardt, H.C.; Roepstorff, L.; Johnston, C.
Title Forelimb tendon loading during jump landings and the influence of fence height Type Journal Article
Year 2001 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 33 Pages 6-10
Keywords Animals; Biomechanics; Forelimb/injuries/physiology; Horses/injuries/*physiology; Lameness, Animal/etiology; Ligaments, Articular/*physiology; Locomotion/*physiology; Physical Conditioning, Animal; Tendon Injuries/complications/physiopathology/veterinary; Tendons/*physiology; Weight-Bearing/physiology
Abstract Lameness in athletic horses is often caused by forelimb tendon injuries, especially in the interosseus tendon (TI) and superficial digital flexor tendon (SDF), but also in the accessory ligament (AL) of the deep digital flexor tendon (DDF). In an attempt to explain the aetiology of these injuries, the present study investigated the loading of the tendons during landing after a jump. In jumping horses, the highest forces can be expected in the trailing limb during landing. Therefore, landing kinematics and ground reaction forces of the trailing forelimb were measured from 6 horses jumping single fences with low to medium heights of 0.80, 1.00 and 1.20 m. The tendon forces were calculated using inverse dynamics and an in vitro model of the lower forelimb. Calculated peak forces in the TI, SDF and DDF + AL during landing were 15.8, 13.9 and 11.7 kN respectively. The relative loading of the tendons (landing forces compared with failure forces determined in a separate study) increased from DDF to TI to SDF and was very high in SDF. This explains the low injury incidence of the DDF and the high injury incidence of the SDF. Fence height substantially influenced SDF forces, whereas it hardly influenced TI forces and did not influence AL strain. Reduction of fence height might therefore limit the risks for SDF injuries, but not for TI and AL injuries.
Address Department of Veterinary Anatomy and Physiology, Institute for Fundamental and Clinical Human Movement Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes PMID:11721571 Approved no
Call Number Equine Behaviour @ team @ Serial 3786
Permanent link to this record
 

 
Author Meershoek, L.S.; Roepstorff, L.; Schamhardt, H.C.; Johnston, C.; Bobbert, M.F.
Title Joint moments in the distal forelimbs of jumping horses during landing Type Journal Article
Year 2001 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 33 Issue 4 Pages 410-415
Keywords Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Horses/*physiology; Joints/*physiology; Physical Conditioning, Animal; Tendons/*physiology; Weight-Bearing
Abstract Tendon injuries are an important problem in athletic horses and are probably caused by excessive loading of the tendons during demanding activities. As a first step towards understanding these injuries, the tendon loading was quantified during jump landings. Kinematics and ground reaction forces were collected from the leading and trailing forelimbs of 6 experienced jumping horses. Joint moments were calculated using inverse dynamic analysis. It was found that the variation of movement and loading patterns was small, both within and between horses. The peak flexor joint moments in the coffin and fetlock joints were larger in the trailing limb (-0.62 and -2.44 Nm/kg bwt, respectively) than in the leading limb (-0.44 and -1.93 Nm/kg bwt, respectively) and exceeded literature values for trot by 82 and 45%. Additionally, there was an extensor coffin joint moment in the first half of the stance phase of the leading limb (peak value 0.26+/-0.18 Nm/kg bwt). From these results, it was concluded that the loading of the flexor tendons during landing was higher in the trailing than in the leading limb and that there was an unexpected loading of the extensor tendon in the leading limb.
Address Department of Veterinary Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference (up)
Notes PMID:11469776 Approved no
Call Number Equine Behaviour @ team @ Serial 3787
Permanent link to this record
 

 
Author Barrey, E.; Galloux, P.
Title Analysis of the equine jumping technique by accelerometry Type Journal Article
Year 1997 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 23 Pages 45-49
Keywords *Acceleration; Analysis of Variance; Animals; Forelimb/physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Movement/physiology; Time Factors
Abstract The purpose of this study was to demonstrate the relationships between jumping technique and dorsoventral acceleration measured at the sternum. Eight saddle horses of various jumping abilities competed on a selective experimental show jumping course including 14 obstacles. An accelerometric belt fastened onto the thorax continuously measured the dorsoventral acceleration during the course. At each jump, 11 locomotor parameters (acceleration peaks, durations and stride frequency) were obtained from the dorsoventral acceleration-time curves. The type of obstacle significantly influenced the hindlimb acceleration peak at take-off and the landing acceleration peak (P<0.01). The poor jumpers exhibited a higher mean forelimb acceleration peak at take-off, a higher forelimb/hindlimb ratio between peaks of acceleration (F/H), and a lower approach stride frequency than good jumpers. Knocking over an obstacle was significantly associated with a low hindlimb acceleration peak at take-off and a high F/H ratio (P<0.01). In order to observe the continuous changes in the frequency domain of the dorsoventral acceleration during the approach and take-off phase, a Morlet's wavelet analysis was computed for each horse jumping over a series of 3 vertical obstacles. Different patterns of time-frequency images obtained by wavelet analysis were found when the horse either knocked over a vertical obstacle or cleared it. In the latter case, the image pattern showed an instantaneous increase in stride frequency at the end of the approach phase, and a marked energy content in the middle frequency range at take-off.
Address INRA Station de Genetique Quantitative et Appliquee, Groupe cheval, Jouy-en-Josas, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes PMID:9354288 Approved no
Call Number Equine Behaviour @ team @ Serial 3796
Permanent link to this record
 

 
Author Takahashi, T.; Kasashima, Y.; Eto, D.; Mukai, K.; Hiraga, A.
Title Effect of uphill exercise on equine superficial digital flexor tendon forces at trot and canter Type Journal Article
Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 36 Pages 435-439
Keywords Animals; Biomechanics; Exercise Test/veterinary; Female; Forelimb/physiology; Hoof and Claw/physiology; Horses/*physiology; Male; Physical Conditioning, Animal/*methods/*physiology; Tarsal Joints/*physiology; Tarsus, Animal; Tendon Injuries/etiology/prevention & control/veterinary; Time Factors
Abstract REASONS FOR PERFORMING STUDY: One cause of overstrain injury to the superficial digital flexor tendon (SDFT) in horses is the force loaded on the SDFT during repeated running. Therefore, decreasing this force may reduce SDFT injury. It has been reported that strain on the SDFT decreases with a toe-wedge shoe. Uphill courses are used for training of racehorses, and the angle of hoof-sole to the horizon during uphill running is similar to that of the toe-wedge shoe. OBJECTIVES: To determine the effects of uphill exercise on the force on the SDFT during trotting and cantering. METHODS: Arthroscopically implantable force probes (AIFP) were implanted into the SDFT of the left or right forelimb of 7 Thoroughbred horses and AIFP output recorded during trotting and cantering on a treadmill inclined at slopes of 0, 3 or 8%, and then 0% again. Superficial digital flexor tendon force was calculated as a relative value, with the amplitude of AIFP output voltage at initial 0% slope equal to 100. RESULTS: Out of 14 sets of experiments, AIFP data were analysed successfully in 9 at the trot, in 3 at the canter in the trailing forelimb on a slope of 3 and 8%, and in 2 at the canter in the leading forelimb on a slope of 3%. Increasing the incline from 0-8% tended to decrease peak force in the SDFT at the trot, and in the trailing forelimb at the canter. However, force in the SDFT was unchanged in the leading forelimb at the canter on the 3% incline. CONCLUSIONS: The force in the SDFT trotting or cantering uphill is unchanged or lower than that loaded at the same speed on a flat surface. Because at similar speeds the workload for uphill exercise is greater than on the flat, uphill running increases exercise intensity without increasing force in the SDFT. POTENTIAL RELEVANCE: Uphill exercise may reduce the risk of SDFT injury as both running speed and SDFT force are decreased on an incline as compared to the flat, even when exercise intensity is the same. Further study is needed to confirm these findings at canter in a larger population of horses.
Address Equine Research Institute, Japan Racing Association, 321-4 Tokami-cho, Utsunomiya, Tochigi 320-0856, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes PMID:17402462 Approved no
Call Number Equine Behaviour @ team @ Serial 4005
Permanent link to this record
 

 
Author Schaer, B.L.D.; Ryan, C.T.; Boston, R.C.; Nunamaker, D.M.
Title The horse-racetrack interface: a preliminary study on the effect of shoeing on impact trauma using a novel wireless data acquisition system Type Journal Article
Year 2006 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 38 Issue 7 Pages 664-670
Keywords Animals; Equipment and Supplies/veterinary; Forelimb/injuries/physiology; Hindlimb/injuries/physiology; Hoof and Claw/*physiology; Horses/*injuries/*physiology; Locomotion/physiology; Muscle, Skeletal/injuries/*physiology; *Musculoskeletal Physiology; Musculoskeletal System/*injuries; Physical Conditioning, Animal/*physiology; Risk Factors; Running/physiology; Shoes
Abstract REASONS FOR PERFORMING STUDY: There is a need to determine accelerations acting on the equine hoof under field conditions in order to better assess the risks for orthopaedic health associated with shoeing practices and/or surface conditions. OBJECTIVES: To measure the acceleration profiles generated in Thoroughbred racehorses exercising at high speeds over dirt racetracks and specifically to evaluate the effect of a toe grab shoe compared to a flat racing plate, using a newly developed wireless data acquisition system (WDAS). METHODS: Four Thoroughbred racehorses in training and racing were used. Based on previous trials, each horse served as its own control for speed trials, with shoe type as variable. Horses were evaluated at speeds ranging from 12.0-17.3 m/sec. Impact accelerations, acceleration on break over and take-off, and temporal stride parameters were calculated. Impact injury scores were also determined, using peak accelerations and the time over which they occurred. RESULTS: Recorded accelerations for the resultant vector (all horses all speeds) calculated from triaxial accelerometers ranged 96.3-251.1 g, depending on the phase of the impact event. An association was observed between shoe type and change in acceleration in individual horses, with 2 horses having increased g on initial impact with toe grab shoes in place. In the final impact phase, one horse had an increase of 110 g while wearing toe grab shoes. Increased accelerations were also observed on break over in 2 horses while wearing toe grab shoes. CONCLUSIONS: Shoe type may change impact accelerations significantly in an individual horse and could represent increased risk for injury. Further work is needed to determine if trends exist across a population. POTENTIAL RELEVANCE: The WDAS could be used for performance evaluation in individual horses to evaluate any component of the horse-performance surface interface, with the goal of minimising risk and optimising performance.
Address Richard S. Reynolds Jr. Comparative Orthopedic Research Laboratory, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania 19348, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference (up)
Notes PMID:17228583 Approved no
Call Number Equine Behaviour @ team @ Serial 4024
Permanent link to this record
 

 
Author Santamaria, S.; Bobbert, M.F.; Back, W.; Barneveld, A.; van Weeren, P.R.
Title Effect of early training on the jumping technique of horses Type Journal Article
Year 2005 Publication American Journal of Veterinary Research Abbreviated Journal Am J Vet Res
Volume 66 Issue 3 Pages 418-424
Keywords Age Factors; Analysis of Variance; Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/growth & development/*physiology; Locomotion/*physiology; Models, Biological; Physical Conditioning, Animal/*methods
Abstract OBJECTIVE: To investigate the effects of early training for jumping by comparing the jumping technique of horses that had received early training with that of horses raised conventionally. ANIMALS: 40 Dutch Warmblood horses. PROCEDURE: The horses were analyzed kinematically during free jumping at 6 months of age. Subsequently, they were allocated into a control group that was raised conventionally and an experimental group that received 30 months of early training starting at 6 months of age. At 4 years of age, after a period of rest in pasture and a short period of training with a rider, both groups were analyzed kinematically during free jumping. Subsequently, both groups started a 1-year intensive training for jumping, and at 5 years of age, they were again analyzed kinematically during free jumping. In addition, the horses competed in a puissance competition to test maximal performance. RESULTS: Whereas there were no differences in jumping technique between experimental and control horses at 6 months of age, at 4 years, the experimental horses jumped in a more effective manner than the control horses; they raised their center of gravity less yet cleared more fences successfully than the control horses. However, at 5 years of age, these differences were not detected. Furthermore, the experimental horses did not perform better than the control horses in the puissance competition. CONCLUSIONS AND CLINICAL RELEVANCE: Specific training for jumping of horses at an early age is unnecessary because the effects on jumping technique and jumping capacity are not permanent.
Address Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, NL-3584 CM Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9645 ISBN Medium
Area Expedition Conference (up)
Notes PMID:15822585 Approved no
Call Number Equine Behaviour @ team @ Serial 4037
Permanent link to this record
 

 
Author Cassiat, G.; Pourcelot, P.; Tavernier, L.; Geiger, D.; Denoix, J.M.; Degueurce, D.
Title Influence of individual competition level on back kinematics of horses jumping a vertical fence Type Journal Article
Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 36 Issue 8 Pages 748-753
Keywords Animals; Back/*physiology; Biomechanics; Female; Forelimb/*physiology; Gait/*physiology; Hindlimb/*physiology; Horses/*physiology; Image Processing, Computer-Assisted; Imaging, Three-Dimensional/veterinary; Locomotion/physiology; Male; Video Recording
Abstract REASONS FOR PERFORMING STUDY: The costs and investments required for the purchase and training of showjumpers justify the need to find selection means for jumping horses. Use of objective kinematic criteria correlated to jumping ability could be helpful for this assessment. OBJECTIVES: To compare back kinematics between 2 groups of horses of different competition levels (Group 1, competing at high level; Group 2 competing at low level) while free jumping over a 1 m vertical fence. METHODS: Three-dimensional recordings were performed using 2 panning cameras. Kinematic parameters of the withers and tuber sacrale (vertical displacement, vertical and horizontal velocities), backline inclination and flexion-extension motion of the 3 main dorsal segments (thoracic, thoracolumbar and lumbosacral) were analysed. RESULTS: Group 2 horses had a lower displacement of their withers and tuber sacrale from the end of the last approach stride until the first departure stride (P<0.05). As a result, they increased the flexion of their thoracolumbar and lumbosacral junctions during the hindlimb swing phase before take-off (P<0.05). However, withers and tuber sacrale velocities were slightly modified. Group 1 horses pitched their backline less forward during the forelimb stance phase before take-off and straightened it more after landing (P<0.05), probably indicating a more efficient strutting action of their forelimbs. CONCLUSIONS AND POTENTIAL RELEVANCE: Because significant differences in back motion were found between good and poor jumpers when jumping a 1 m high fence, criteria based on certain back kinematics can be developed that may help in the selection of talented showjumpers.
Address UMR INRA-ENVA de Biomecanique et Pathologie Locomotrice du Cheval, Ecole Nationale Veterinaire d'Alfort, Avenue du General de Gaulle, 94704 Maisons Alfort, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference (up)
Notes PMID:15656509 Approved no
Call Number Equine Behaviour @ team @ Serial 4042
Permanent link to this record
 

 
Author van Heel, M.C.V.; Kroekenstoel, A.M.; van Dierendonck, M.C.; van Weeren, P.R.; Back, W.
Title Uneven feet in a foal may develop as a consequence of lateral grazing behaviour induced by conformational traits Type Journal Article
Year 2006 Publication Equine veterinary journal Abbreviated Journal Equine. Vet. J.
Volume 38 Issue 7 Pages 646-651
Keywords Aging/*physiology; Animals; Animals, Newborn/anatomy & histology/growth & development/physiology; Feeding Behavior/*physiology; Female; Forelimb/*anatomy & histology/*physiology; *Horses/anatomy & histology/growth & development/physiology; Male
Abstract REASONS FOR PERFORMING STUDY: Conformational traits are important in breeding, since they may be indicative for performance ability and susceptibility to injuries. OBJECTIVES: To study whether certain desired conformational traits of foals are related to lateralised behaviour while foraging and to the development of uneven feet. METHODS: Twenty-four Warmblood foals, born and raised at the same location, were studied for a year. Foraging behaviour was observed by means of weekly 10 min scan-sampling for 8 h. A preference test (PT) was developed to serve as a standardised tool to determine laterality. The foals were evaluated at age 3, 15, 27 and 55 weeks. The PT and distal limb conformation were used to study the relation between overall body conformation, laterality and the development of uneven feet. Pressure measurements were used to determine the loading patterns under the feet. RESULTS: About 50% of the foals developed a significant preference to protract the same limb systematically while grazing, which resulted in uneven feet and subsequently uneven loading patterns. Foals with relatively long limbs and small heads were predisposed to develop laterality and, consequently unevenness. CONCLUSIONS: Conformational traits may stimulate the development of laterality and therefore indirectly cause uneven feet.
Address Derona Equine Performance Laboratory, Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 12, NL-3584 CM Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference (up)
Notes PMID:17228580 Approved no
Call Number Serial 1774
Permanent link to this record
 

 
Author McGreevy, P.D.; Rogers, L.J.
Title Motor and sensory laterality in thoroughbred horses Type Journal Article
Year 2005 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.
Volume 92 Issue 4 Pages 337-352
Keywords Horse; Lateralisation; Training; Olfaction; Forelimb preference
Abstract We investigated lateralisation in horses because it is likely to be important in training and athletic performance. Thoroughbred horses (n = 106) were observed every 60 s for 2 h, when they were at pasture, and the position of the forelimbs in relation to one another was recorded. There was a population bias skewed to standing with the left forelimb advanced over the right (i.e. directional lateralisation). Using the first 50 observations, the distribution of preferences was 43 significantly left, 10 significantly right with 53 being non-significant (i.e. ambidextextrous). The strength of motor bias increased with age, suggesting maturation or an influence of training. The horses were also presented with an olfactory stimulus (stallion faeces) to score the tendency to use one nostril rather than the other. A significant preference to use the right nostril first was shown in horses under 4 years of age (n = 61) but not in older horses. Of the 157 horses tested for nostril bias, 76 had been assessed for motor bias and so were used for analysis of the relationship between laterality in the two modalities. There was no significant relationship between direction of foreleg motor bias and first nostril used, total number of inhalations or laterality index of nostril use. The absence of a correlation between laterality of nostril use and motor bias indicates that lateralisation of the equine brain occurs on at least two levels of neural organisation--sensory and motor--a finding that is consistent with other examples of lateralisation in species that have been examined in more detail.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes Approved no
Call Number Equine Behaviour @ team @ room 3.029 Serial 1827
Permanent link to this record
 

 
Author Bobbert, M.F.; Santamaria, S.
Title Contribution of the forelimbs and hindlimbs of the horse to mechanical energy changes in jumping Type Journal Article
Year 2005 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 208 Issue 2 Pages 249-260
Keywords Animals; Biomechanics; Forelimb/*physiology; Hindlimb/*physiology; Horses/*physiology; Locomotion/*physiology; Muscle, Skeletal/*physiology; Time Factors
Abstract The purpose of the present study was to gain more insight into the contribution of the forelimbs and hindlimbs of the horse to energy changes during the push-off for a jump. For this purpose, we collected kinematic data at 240 Hz from 23 5-year-old Warmbloods (average mass: 595 kg) performing free jumps over a 1.15 m high fence. From these data, we calculated the changes in mechanical energy and the changes in limb length and joint angles. The force carried by the forelimbs and the amount of energy stored was estimated from the distance between elbow and hoof, assuming that this part of the leg behaved as a linear spring. During the forelimb push, the total energy first decreased by 3.2 J kg(-1) and then increased again by 4.2 J kg(-1) to the end of the forelimb push. At the end of the forelimb push, the kinetic energy due to horizontal velocity of the centre of mass was 1.6 J kg(-1) less than at the start, while the effective energy (energy contributing to jump height) was 2.3 J kg(-1) greater. It was investigated to what extent these changes could involve passive spring-like behaviour of the forelimbs. The amount of energy stored and re-utilized in the distal tendons during the forelimb push was estimated to be on average 0.4 J kg(-1) in the trailing forelimb and 0.23 J kg(-1) in the leading forelimb. This means that a considerable amount of energy was first dissipated and subsequently regenerated by muscles, with triceps brachii probably being the most important contributor. During the hindlimb push, the muscles of the leg were primarily producing energy. The total increase in energy was 2.5 J kg(-1) and the peak power output amounted to 71 W kg(-1).
Address Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, van der Boechorstraat 9, NL-1081 BT Amsterdam, The Netherlands. MFBobbert@fbw.vu.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference (up)
Notes PMID:15634844 Approved no
Call Number Serial 1895
Permanent link to this record