|   | 
Details
   web
Records
Author (down) Schaer, B.L.D.; Ryan, C.T.; Boston, R.C.; Nunamaker, D.M.
Title The horse-racetrack interface: a preliminary study on the effect of shoeing on impact trauma using a novel wireless data acquisition system Type Journal Article
Year 2006 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 38 Issue 7 Pages 664-670
Keywords Animals; Equipment and Supplies/veterinary; Forelimb/injuries/physiology; Hindlimb/injuries/physiology; Hoof and Claw/*physiology; Horses/*injuries/*physiology; Locomotion/physiology; Muscle, Skeletal/injuries/*physiology; *Musculoskeletal Physiology; Musculoskeletal System/*injuries; Physical Conditioning, Animal/*physiology; Risk Factors; Running/physiology; Shoes
Abstract REASONS FOR PERFORMING STUDY: There is a need to determine accelerations acting on the equine hoof under field conditions in order to better assess the risks for orthopaedic health associated with shoeing practices and/or surface conditions. OBJECTIVES: To measure the acceleration profiles generated in Thoroughbred racehorses exercising at high speeds over dirt racetracks and specifically to evaluate the effect of a toe grab shoe compared to a flat racing plate, using a newly developed wireless data acquisition system (WDAS). METHODS: Four Thoroughbred racehorses in training and racing were used. Based on previous trials, each horse served as its own control for speed trials, with shoe type as variable. Horses were evaluated at speeds ranging from 12.0-17.3 m/sec. Impact accelerations, acceleration on break over and take-off, and temporal stride parameters were calculated. Impact injury scores were also determined, using peak accelerations and the time over which they occurred. RESULTS: Recorded accelerations for the resultant vector (all horses all speeds) calculated from triaxial accelerometers ranged 96.3-251.1 g, depending on the phase of the impact event. An association was observed between shoe type and change in acceleration in individual horses, with 2 horses having increased g on initial impact with toe grab shoes in place. In the final impact phase, one horse had an increase of 110 g while wearing toe grab shoes. Increased accelerations were also observed on break over in 2 horses while wearing toe grab shoes. CONCLUSIONS: Shoe type may change impact accelerations significantly in an individual horse and could represent increased risk for injury. Further work is needed to determine if trends exist across a population. POTENTIAL RELEVANCE: The WDAS could be used for performance evaluation in individual horses to evaluate any component of the horse-performance surface interface, with the goal of minimising risk and optimising performance.
Address Richard S. Reynolds Jr. Comparative Orthopedic Research Laboratory, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania 19348, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:17228583 Approved no
Call Number Equine Behaviour @ team @ Serial 4024
Permanent link to this record
 

 
Author (down) Santamaria, S.; Bobbert, M.F.; Back, W.; Barneveld, A.; van Weeren, P.R.
Title Effect of early training on the jumping technique of horses Type Journal Article
Year 2005 Publication American Journal of Veterinary Research Abbreviated Journal Am J Vet Res
Volume 66 Issue 3 Pages 418-424
Keywords Age Factors; Analysis of Variance; Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/growth & development/*physiology; Locomotion/*physiology; Models, Biological; Physical Conditioning, Animal/*methods
Abstract OBJECTIVE: To investigate the effects of early training for jumping by comparing the jumping technique of horses that had received early training with that of horses raised conventionally. ANIMALS: 40 Dutch Warmblood horses. PROCEDURE: The horses were analyzed kinematically during free jumping at 6 months of age. Subsequently, they were allocated into a control group that was raised conventionally and an experimental group that received 30 months of early training starting at 6 months of age. At 4 years of age, after a period of rest in pasture and a short period of training with a rider, both groups were analyzed kinematically during free jumping. Subsequently, both groups started a 1-year intensive training for jumping, and at 5 years of age, they were again analyzed kinematically during free jumping. In addition, the horses competed in a puissance competition to test maximal performance. RESULTS: Whereas there were no differences in jumping technique between experimental and control horses at 6 months of age, at 4 years, the experimental horses jumped in a more effective manner than the control horses; they raised their center of gravity less yet cleared more fences successfully than the control horses. However, at 5 years of age, these differences were not detected. Furthermore, the experimental horses did not perform better than the control horses in the puissance competition. CONCLUSIONS AND CLINICAL RELEVANCE: Specific training for jumping of horses at an early age is unnecessary because the effects on jumping technique and jumping capacity are not permanent.
Address Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, NL-3584 CM Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9645 ISBN Medium
Area Expedition Conference
Notes PMID:15822585 Approved no
Call Number Equine Behaviour @ team @ Serial 4037
Permanent link to this record
 

 
Author (down) Santamaria, S.; Bobbert, M.E.; Back, W.; Barneveld, A.; van Weeren, P.R.
Title Variation in free jumping technique within and among horses with little experience in show jumping Type Journal Article
Year 2004 Publication American Journal of Veterinary Research Abbreviated Journal Am J Vet Res
Volume 65 Issue 7 Pages 938-944
Keywords *Acceleration; Analysis of Variance; Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Models, Biological; Video Recording
Abstract OBJECTIVE: To quantify variation in the jumping technique within and among young horses with little jumping experience, establish relationships between kinetic and kinematic variables, and identify a limited set of variables characteristic for detecting differences in jumping performance among horses. ANIMALS: Fifteen 4-year-old Dutch Warmblood horses. PROCEDURE: The horses were raised under standardized conditions and trained in accordance with a fixed protocol for a short period. Subsequently, horses were analyzed kinematically during free jumping over a fence with a height of 1.05 m. RESULTS: Within-horse variation in all variables that quantified jumping technique was smaller than variation among horses. However, some horses had less variation than others. Height of the center of gravity (CG) at the apex of the jump ranged from 1.80 to 2.01 m among horses; this variation could be explained by the variation in vertical velocity of the CG at takeoff (r, 0.78). Horses that had higher vertical velocity at takeoff left the ground and landed again farther from the fence, had shorter push-off phases for the forelimbs and hind limbs, and generated greater vertical acceleration of the CG primarily during the hind limb push-off. However, all horses cleared the fence successfully, independent of jumping technique. CONCLUSIONS AND CLINICAL RELEVANCE: Each horse had its own jumping technique. Differences among techniques were characterized by variations in the vertical velocity of the CG at takeoff. It must be determined whether jumping performance later in life can be predicted from observing free jumps of young horses.
Address Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 12, NL-3584 CM Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9645 ISBN Medium
Area Expedition Conference
Notes PMID:15281652 Approved no
Call Number Equine Behaviour @ team @ Serial 3772
Permanent link to this record
 

 
Author (down) Santamaria, S.; Back, W.; van Weeren, P.R.; Knaap, J.; Barneveld, A.
Title Jumping characteristics of naive foals: lead changes and description of temporal and linear parameters Type Journal Article
Year 2002 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 34 Pages 302-307
Keywords Animals; Animals, Newborn/*physiology; Biomechanics; Female; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Male
Abstract The selection of foals as future showjumpers remains a subjective process based on qualitative parameters; and hence, frequently suffers from disparity in the criteria used by experts in the field. A detailed biomechanical description of foals while jumping would be most helpful in providing a better basis for the accurate assessment of their future athletic ability. The Qualisys Pro Reflex system was used to capture 3-dimensional kinematics of 41 Dutch Warmblood foals age 6 months free jumping a vertical fence, preceded by a cross pole fence. The left lead was the most preferred lead for both the fore- and hindlimbs, from the landing following the cross poles to the first move-off stride after clearing the vertical fence. The foals displayed a high incidence of rotary gallop during both the jump stride (divided into take-off, jump suspension and landing) and the first move-off stride, while change of lead was frequently observed during jump suspension. At the take-off side of the fence, the trailing forelimb in the last approach stride was placed furthest from the fence, whereas the trailing hindlimb at take-off was placed closest (P<0.05). At the landing side, the trailing forelimb was the closest and the leading hindlimb of the move-off stride 1 was the furthest (P<0.05). The trailing forelimb in the approach stride 1 had a significantly longer stance phase duration than the leading forelimb. At landing, the leading forelimb stance phase lasted longer than that of the trailing forelimb (P<0.05). The hindlimbs did not differ in their stance phase duration at take-off. The height reached by the hooves above the fence top was significantly greater in the hind limbs (P<0.05). In addition, the hindlimbs (97.1 +/- 2.6%) shortened more than the forelimbs (92.6 +/- 5.7%) (P<0.05). It is concluded that the overall jumping technique of foals is similar to that reported in literature for mature horses. If the patterns are consistent throughout the rearing period, the quantitative analysis of the kinematics of free jumping foals may provide a valid quantitative basis for early selection.
Address Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:12405705 Approved no
Call Number Equine Behaviour @ team @ Serial 3784
Permanent link to this record
 

 
Author (down) Rollot, Y.; Lecuyer, E.; Chateau, H.; Crevier-Denoix, N.
Title Development of a 3D model of the equine distal forelimb and of a GRF shoe for noninvasive determination of in vivo tendon and ligament loads and strains Type Journal Article
Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 36 Issue 8 Pages 677-682
Keywords Animals; Biomechanics; Floors and Floorcoverings; Forelimb/*physiology/ultrasonography; Gait/physiology; Horses/*physiology; Image Processing, Computer-Assisted; Imaging, Three-Dimensional/methods/*veterinary; Ligaments, Articular/*physiology; Locomotion/*physiology; Models, Biological; Shoes; Tendons/*physiology; Toe Joint/physiology/ultrasonography
Abstract REASONS FOR PERFORMING STUDY: As critical locomotion events (e.g. high-speed and impacts during racing, jump landing) may contribute to tendinopathies, in vivo recording of gaits kinematic and dynamic parameters is essential for 3D reconstruction and analysis. OBJECTIVE: To propose a 3D model of the forelimb and a ground reaction force recording shoe (GRF-S) for noninvasively quantifying tendon and ligament loads and strains. METHODS: Bony segments trajectories of forelimbs placed under a power press were recorded using triads of ultrasonic kinematic markers linked to the bones. Compression cycles (from 500-6000 N) were applied for different hoof orientations. Locations of tendon and ligament insertions were recorded with regard to the triads. The GRF-S recorded GRF over the hoof wall and used four 3-axis force sensors sandwiched between a support shoe and the shoe to be tested. RESULTS: Validation of the model by comparing calculated and measured superficial digital flexor tendon strains, and evaluation of the role of proximal interphalangeal joint in straight sesamoidean ligament and oblique sesamoidean ligament strains, were successfully achieved. Objective comparisons of the 3 components of GRF over the hoof for soft and hard grounds could be recorded, where the s.d. of GRF norm was more important on hard ground at walk and trot. CONCLUSIONS: Soft grounds (sand and rubber) dissipate energy by lowering GRF amplitude and diminish bounces and vibrations at impact. At comparable speed, stance phase was longer on soft sand ground. POTENTIAL RELEVANCE: The conjugate use of the GRF-S and the numerical model would help to quantify and analyse ground/shoe combination on comfort, propulsion efficiency or lameness recovery.
Address UMR INRA-ENVA de Biomecanique et Pathologie Locomotrice du Cheval, Ecole Nationale Veterinaire d'Alfort, 7, Avenue du General de Gaulle, 94704 Maisons-Alfort, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:15656495 Approved no
Call Number Equine Behaviour @ team @ Serial 3769
Permanent link to this record
 

 
Author (down) Meershoek, L.S.; Schamhardt, H.C.; Roepstorff, L.; Johnston, C.
Title Forelimb tendon loading during jump landings and the influence of fence height Type Journal Article
Year 2001 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 33 Pages 6-10
Keywords Animals; Biomechanics; Forelimb/injuries/physiology; Horses/injuries/*physiology; Lameness, Animal/etiology; Ligaments, Articular/*physiology; Locomotion/*physiology; Physical Conditioning, Animal; Tendon Injuries/complications/physiopathology/veterinary; Tendons/*physiology; Weight-Bearing/physiology
Abstract Lameness in athletic horses is often caused by forelimb tendon injuries, especially in the interosseus tendon (TI) and superficial digital flexor tendon (SDF), but also in the accessory ligament (AL) of the deep digital flexor tendon (DDF). In an attempt to explain the aetiology of these injuries, the present study investigated the loading of the tendons during landing after a jump. In jumping horses, the highest forces can be expected in the trailing limb during landing. Therefore, landing kinematics and ground reaction forces of the trailing forelimb were measured from 6 horses jumping single fences with low to medium heights of 0.80, 1.00 and 1.20 m. The tendon forces were calculated using inverse dynamics and an in vitro model of the lower forelimb. Calculated peak forces in the TI, SDF and DDF + AL during landing were 15.8, 13.9 and 11.7 kN respectively. The relative loading of the tendons (landing forces compared with failure forces determined in a separate study) increased from DDF to TI to SDF and was very high in SDF. This explains the low injury incidence of the DDF and the high injury incidence of the SDF. Fence height substantially influenced SDF forces, whereas it hardly influenced TI forces and did not influence AL strain. Reduction of fence height might therefore limit the risks for SDF injuries, but not for TI and AL injuries.
Address Department of Veterinary Anatomy and Physiology, Institute for Fundamental and Clinical Human Movement Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:11721571 Approved no
Call Number Equine Behaviour @ team @ Serial 3786
Permanent link to this record
 

 
Author (down) Meershoek, L.S.; Roepstorff, L.; Schamhardt, H.C.; Johnston, C.; Bobbert, M.F.
Title Joint moments in the distal forelimbs of jumping horses during landing Type Journal Article
Year 2001 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 33 Issue 4 Pages 410-415
Keywords Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Horses/*physiology; Joints/*physiology; Physical Conditioning, Animal; Tendons/*physiology; Weight-Bearing
Abstract Tendon injuries are an important problem in athletic horses and are probably caused by excessive loading of the tendons during demanding activities. As a first step towards understanding these injuries, the tendon loading was quantified during jump landings. Kinematics and ground reaction forces were collected from the leading and trailing forelimbs of 6 experienced jumping horses. Joint moments were calculated using inverse dynamic analysis. It was found that the variation of movement and loading patterns was small, both within and between horses. The peak flexor joint moments in the coffin and fetlock joints were larger in the trailing limb (-0.62 and -2.44 Nm/kg bwt, respectively) than in the leading limb (-0.44 and -1.93 Nm/kg bwt, respectively) and exceeded literature values for trot by 82 and 45%. Additionally, there was an extensor coffin joint moment in the first half of the stance phase of the leading limb (peak value 0.26+/-0.18 Nm/kg bwt). From these results, it was concluded that the loading of the flexor tendons during landing was higher in the trailing than in the leading limb and that there was an unexpected loading of the extensor tendon in the leading limb.
Address Department of Veterinary Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:11469776 Approved no
Call Number Equine Behaviour @ team @ Serial 3787
Permanent link to this record
 

 
Author (down) McGuigan, M.P.; Wilson, A.M.
Title The effect of gait and digital flexor muscle activation on limb compliance in the forelimb of the horse Equus caballus Type Journal Article
Year 2003 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 206 Issue Pt 8 Pages 1325-1336
Keywords Animals; Biomechanics; Forelimb/anatomy & histology/*physiology; Gait/*physiology; Horses/anatomy & histology/*physiology; Muscle Contraction/*physiology; Running
Abstract A horse's legs are compressed during the stance phase, storing and then returning elastic strain energy in spring-like muscle-tendon units. The arrangement of the muscle-tendon units around the lever-like joints means that as the leg shortens the muscle-tendon units are stretched. The forelimb anatomy means that the leg can be conceptually divided into two springs: the proximal spring, from the scapula to the elbow, and the distal spring, from the elbow to the foot. In this paper we report the results of a series of experiments testing the hypothesis that there is minimal scope for muscle contraction in either spring to adjust limb compliance. Firstly, we demonstrate that the distal, passive leg spring changes length by 127 mm (range 106-128 mm) at gallop and the proximal spring by 12 mm (9-15 mm). Secondly, we demonstrate that there is a linear relationship between limb force and metacarpo-phalangeal (MCP) joint angle that is minimally influenced by digital flexor muscle activation in vitro or as a function of gait in vivo. Finally, we determined the relationship between MCP joint angle and vertical ground-reaction force at trot and then predicted the forelimb peak vertical ground-reaction force during a 12 m s(-1) gallop on a treadmill. These were 12.79 N kg(-1) body mass (BM) (range 12.07-13.73 N kg(-1) BM) for the lead forelimb and 15.23 N kg(-1) BM (13.51-17.10 N kg(-1) BM) for the non-lead forelimb.
Address Structure and Motion Laboratory, Veterinary Basic Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK. m.p.mcguigan@leeds.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:12624168 Approved no
Call Number Equine Behaviour @ team @ Serial 3655
Permanent link to this record
 

 
Author (down) McGreevy, P.D.; Rogers, L.J.
Title Motor and sensory laterality in thoroughbred horses Type Journal Article
Year 2005 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.
Volume 92 Issue 4 Pages 337-352
Keywords Horse; Lateralisation; Training; Olfaction; Forelimb preference
Abstract We investigated lateralisation in horses because it is likely to be important in training and athletic performance. Thoroughbred horses (n = 106) were observed every 60 s for 2 h, when they were at pasture, and the position of the forelimbs in relation to one another was recorded. There was a population bias skewed to standing with the left forelimb advanced over the right (i.e. directional lateralisation). Using the first 50 observations, the distribution of preferences was 43 significantly left, 10 significantly right with 53 being non-significant (i.e. ambidextextrous). The strength of motor bias increased with age, suggesting maturation or an influence of training. The horses were also presented with an olfactory stimulus (stallion faeces) to score the tendency to use one nostril rather than the other. A significant preference to use the right nostril first was shown in horses under 4 years of age (n = 61) but not in older horses. Of the 157 horses tested for nostril bias, 76 had been assessed for motor bias and so were used for analysis of the relationship between laterality in the two modalities. There was no significant relationship between direction of foreleg motor bias and first nostril used, total number of inhalations or laterality index of nostril use. The absence of a correlation between laterality of nostril use and motor bias indicates that lateralisation of the equine brain occurs on at least two levels of neural organisation--sensory and motor--a finding that is consistent with other examples of lateralisation in species that have been examined in more detail.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ room 3.029 Serial 1827
Permanent link to this record
 

 
Author (down) Licka, T.; Kapaun, M.; Peham, C.
Title Influence of rider on lameness in trotting horses Type Journal Article
Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 36 Issue 8 Pages 734-736
Keywords Animals; Biomechanics; Body Weight; Exercise Test/veterinary; Female; Forelimb/physiopathology; Gait/*physiology; Head Movements/*physiology; Hindlimb/physiopathology; Horse Diseases/diagnosis/*physiopathology; Horses; Humans; Lameness, Animal/diagnosis/*physiopathology; Male; Stress, Mechanical; Weight-Bearing/physiology
Abstract REASONS FOR PERFORMING STUDY: Equine lameness is commonly evaluated when the horse is being ridden, but the influence of the rider on the lameness has not been documented. OBJECTIVE: To document the effect of 2 riders of different training levels on the vertical movement of the head and croup. METHODS: Twenty mature horses were ridden at trot by an experienced dressage rider and a novice rider, as well as trotted in hand. Kinematic measurements of markers placed on the horse's head and sacral bone were carried out. The asymmetries of the vertical head and sacral bone motion were calculated as lameness parameters and compared with paired t tests. RESULTS: Trotting in hand, 17 horses showed forelimb lameness (1-4/10) and 13 hindlimb lameness (1-2/10). Intra-individually, 11 horses showed significant differences in forelimb lameness and 4 horses showed significant differences in hindlimb lameness when ridden. Over all horses, hindlimb lameness increased significantly under the dressage rider compared to unridden horses. CONCLUSIONS: The presence of a rider can alter the degree of lameness; however, its influence cannot be predicted for an individual horse. POTENTIAL RELEVANCE: In order to evaluate mild lameness, horses should be evaluated at trot both under saddle and in hand. If lameness is exacerbated, a second rider may be helpful; the level of training of the rider should be taken into consideration.
Address Movement Science Group, Department V, Clinic of Orthopaedics in Ungulates, University of Veterinary Medicine, Vienna, Austria
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:15656506 Approved no
Call Number Equine Behaviour @ team @ Serial 3715
Permanent link to this record