|   | 
Details
   web
Records
Author (up) Abbruzzetti, S.; Viappiani, C.; Sinibaldi, F.; Santucci, R.
Title Kinetics of histidine dissociation from the heme Fe(III) in N-fragment (residues 1-56) of cytochrome c Type Journal Article
Year 2004 Publication The Protein Journal Abbreviated Journal Protein J
Volume 23 Issue 8 Pages 519-527
Keywords Animals; Cytochromes c/*chemistry; Enzyme Activation; Histidine/*chemistry; Horses; Hydrogen-Ion Concentration; Kinetics; Lasers; Ligands; Peptide Mapping; Photolysis; Spectrophotometry
Abstract We have here investigated the dissociation kinetics of the His side chains axially ligated to the heme-iron in the ferric (1-56 residues) N-fragment of horse cyt c. The ligand deligation induced by acidic pH-jump occurs as a biexponential process with different pre-exponential factors, consistent with a structural heterogeneity in solution and the presence of two differently coordinated species. In analogy with GuHCl-denatured cyt c, our data indicate the presence in solution of two ferric forms of the N-fragment characterized by bis-His coordination, as summarized in the following scheme: His18-Fe(III)-His26 <==> His18-Fe(III)-His33. We have found that the pre-exponential factors depend on the extent of the pH-jump. This may be correlated with the different pKa values shown by His26 and His33; due to steric factors, His26 binds to the heme-Fe(III) less strongly than His33, as recently shown by studies on denatured cyt c. Interestingly, the two lifetimes are affected by temperature but not by the extent of the pH-jump. The lower pKa for the deligation reaction required the use of an improved laser pH-jump setup, capable of inducing changes in H+ concentration as large as 1 mM after the end of the laser pulse. For the ferric N-fragment, close activation entropy values have been determined for the two histidines coordinated to the iron; this result significantly differs from that for GuHCl-denatured cyt c, where largely different values of activation entropy were calculated. This underlines the role played by the missing segment (residues 57-104) peptide chain in discriminating deligation of the “nonnative” His from the sixth coordination position of the metal.
Address Dipartimento di Fisica, Universita degli Studi di Parma, Parco Area delle Scienze 7/A 43100 Parma, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1572-3887 ISBN Medium
Area Expedition Conference
Notes PMID:15648974 Approved no
Call Number Equine Behaviour @ team @ Serial 3770
Permanent link to this record
 

 
Author (up) Hirota, S.; Suzuki, M.; Watanabe, Y.
Title Hydrophobic effect of trityrosine on heme ligand exchange during folding of cytochrome c Type Journal Article
Year 2004 Publication Biochemical and Biophysical Research Communications Abbreviated Journal Biochem Biophys Res Commun
Volume 314 Issue 2 Pages 452-458
Keywords Amino Acids/chemistry; Animals; Cytochromes c/*chemistry; Heme/*chemistry; Histidine/chemistry; Horses; Hydrogen-Ion Concentration; Kinetics; Ligands; Myocardium/chemistry; Peptides/chemistry; Protein Folding; Spectrophotometry; Spectrum Analysis, Raman; Tyrosine/*analogs & derivatives/*chemistry
Abstract Effect of a hydrophobic peptide on folding of oxidized cytochrome c (cyt c) is studied with trityrosine. Folding of cyt c was initiated by pH jump from 2.3 (acid-unfolded) to 4.2 (folded). The Soret band of the 2-ms transient absorption spectrum during folding decreased its intensity and red-shifted from 397 to 400 nm by interaction with trityrosine, whereas tyrosinol caused no significant effect. The change in the transient absorption spectrum by interaction with trityrosine was similar to that obtained with 100 mM imidazole, which showed that the population of the intermediate His/His coordinated species increased during folding of cyt c by interaction with trityrosine. The absorption change was biphasic, the fast phase (82+/-9s(-1)) corresponding to the transition from the His/H(2)O to the His/Met coordinated species, whereas the slow phase (24+/-3s(-1)) from His/His to His/Met. By addition of trityrosine, the relative ratio of the slow phase increased, due to increase of the His/His species at the initial stage of folding. According to the resonance Raman spectra of cyt c, the high-spin 6-coordinate and low-spin 6-coordinate species were dominated at pH 2.3 and 4.2, respectively, and these species were not affected by addition of trityrosine. These results demonstrated that the His/His species increased by interaction with trityrosine at the initial stage of cyt c folding, whereas the heme coordination structure was not affected by trityrosine when the protein was completely unfolded or folded. Hydrophobic peptides thus may be useful to study the effects of hydrophobic interactions on protein folding.
Address Department of Physical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, 607-8414 Kyoto, Japan. hirota@mb.kyoto-phu.ac.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-291X ISBN Medium
Area Expedition Conference
Notes PMID:14733927 Approved no
Call Number Equine Behaviour @ team @ Serial 3777
Permanent link to this record