toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Marinsek, N.L.; Gazzaniga, M.S.; Miller, M.B. url  doi
isbn  openurl
  Title Chapter 17 – Split-Brain, Split-Mind Type Book Chapter
  Year 2016 Publication The Neurology of Conciousness (Second Edition) Abbreviated Journal  
  Volume Issue Pages 271-279  
  Keywords Split-brain; consciousness; lateralization; modular; left hemisphere interpreter  
  Abstract The corpus callosum anatomically and functionally connects the two cerebral hemispheres. Despite its important role in interhemispheric communication however, severing the corpus callosum produces few--if any--noticeable cognitive or behavioral abnormalities. Incredibly, split-brain patients do not report any drastic changes in their conscious experience even though nearly all interhemispheric communication ceases after surgery. Extensive research has shown that both hemispheres remain conscious following disconnection and the conscious experience of each hemisphere is private and independent of the other. Additionally, the conscious experiences of the hemispheres appear to be qualitatively different, such that the consciousness of the left hemisphere is more enriched than the right. In this chapter, we offer explanations as to why split-brain patients feel unified despite possessing dual conscious experiences and discuss how the divided consciousness of split-brain patients can inform current theories of consciousness.  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication San Diego Editor Laureys, S.; Gosseries, O.; Tononi, G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-12-800948-2 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6648  
Permanent link to this record
 

 
Author Morton, D.B. url  openurl
  Title Self-consciousness and animal suffering Type Journal Article
  Year 2000 Publication Biologist (London, England) Abbreviated Journal Biologist (London)  
  Volume 47 Issue 2 Pages 77-80  
  Keywords Animal Population Groups/*psychology; Animal Welfare/*standards; Animals; Behavior, Animal; *Consciousness; Dogs; *Ego; Horses/psychology; Pain/psychology/*veterinary; Pan troglodytes/psychology; Parrots; Pongo pygmaeus/psychology; Self Concept  
  Abstract Animals with relatively highly developed brains are likely to experience some degree of self-awareness and the ability to think. As well as being interesting in its own right, self-consciousness matters from an ethical point of view, since it can give rise to forms of suffering above and beyond the immediate physical sensations of pain or distress. This article surveys the evidence for animal self-consciousness and its implications for animal welfare.  
  Address Division of Primary Care, Public and Occupational Health, School of Medicine, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. d.b.morton@bham.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3347 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11190233 Approved no  
  Call Number refbase @ user @ Serial 618  
Permanent link to this record
 

 
Author Griffin, D.R. doi  openurl
  Title From cognition to consciousness Type Journal Article
  Year 1998 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 1 Issue 1 Pages 3-16  
  Keywords Animal minds – Cognitive ethology – Cognition – Consciousness  
  Abstract This paper proposes an extension of scientific horizons in the study of animal behavior and cognition to include conscious experiences. From this perspective animals are best appreciated as actors rather than passive objects. A major adaptive function of their central nervous systems may be simple, but conscious and rational, thinking about alternative actions and choosing those the animal believes will get what it wants, or avoid what it dislikes or fears. Versatile adjustment of behavior in response to unpredictable challenges provides strongly suggestive evidence of simple but conscious thinking. And especially significant objective data about animal thoughts and feelings are already available, once communicative signals are recognized as evidence of the subjective experiences they often convey to others. The scientific investigation of human consciousness has undergone a renaissance in the 1990s, as exemplified by numerous symposia, books and two new journals. The neural correlates of cognition appear to be basically similar in all central nervous systems. Therefore other species equipped with very similar neurons, synapses, and glia may well be conscious. Simple perceptual and rational conscious thinking may be at least as important for small animals as for those with large enough brains to store extensive libraries of behavioral rules. Perhaps only in “megabrains” is most of the information processing unconscious.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 3088  
Permanent link to this record
 

 
Author Spadavecchia, C.; Arendt-Nielsen, L.; Spadavecchia, L.; Mosing, M.; Auer, U.; van den Hoven, R. doi  openurl
  Title Effects of butorphanol on the withdrawal reflex using threshold, suprathreshold and repeated subthreshold electrical stimuli in conscious horses Type Journal Article
  Year 2007 Publication Veterinary anaesthesia and analgesia Abbreviated Journal Vet Anaesth Analg  
  Volume 34 Issue 1 Pages 48-58  
  Keywords Analgesics, Opioid/pharmacology; Animals; Butorphanol/*pharmacology; Consciousness; Electric Stimulation; Electromyography; Female; Forelimb/physiology; Horses/*physiology; Male; Pain/veterinary; Pain Threshold/*drug effects; Reflex/*drug effects  
  Abstract OBJECTIVE: To assess the effects of a single intravenous dose of butorphanol (0.1 mg kg(-1)) on the nociceptive withdrawal reflex (NWR) using threshold, suprathreshold and repeated subthreshold electrical stimuli in conscious horses. STUDY DESIGN: 'Unblinded', prospective experimental study. ANIMALS: Ten adult horses, five geldings and five mares, mean body mass 517 kg (range 487-569 kg). METHODS: The NWR was elicited using single transcutaneous electrical stimulation of the palmar digital nerve. Repeated stimulations were applied to evoke temporal summation. Surface electromyography was performed to record and quantify the responses of the common digital extensor muscle to stimulation and behavioural reactions were scored. Before butorphanol administration and at fixed time points up to 2 hours after injection, baseline threshold intensities for NWR and temporal summation were defined and single suprathreshold stimulations applied. Friedman repeated-measures analysis of variance on ranks and Wilcoxon signed-rank test were used with the Student-Newman-Keul's method applied post-hoc. The level of significance (alpha) was set at 0.05. RESULTS: Butorphanol did not modify either the thresholds for NWR and temporal summation or the reaction scores, but the difference between suprathreshold and threshold reflex amplitudes was reduced when single stimulation was applied. Upon repeated stimulation after butorphanol administration, a significant decrease in the relative amplitude was calculated for both the 30-80 and the 80-200 millisecond intervals after each stimulus, and for the whole post-stimulation interval in the right thoracic limb. In the left thoracic limb a decrease in the relative amplitude was found only in the 30-80 millisecond epoch. CONCLUSION: Butorphanol at 0.1 mg kg(-1) has no direct action on spinal Adelta nociceptive activity but may have some supraspinal effects that reduce the gain of the nociceptive system. CLINICAL RELEVANCE: Butorphanol has minimal effect on sharp immediate Adelta-mediated pain but may alter spinal processing and decrease the delayed sensations of pain.  
  Address Anesthesiology Section, Department of Clinical Veterinary Sciences, Vetsuisse Faculty, University of Berne, Berne, Switzerland. claudia.spadavecchia@veths.no  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1467-2987 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17238962 Approved no  
  Call Number refbase @ user @ Serial 92  
Permanent link to this record
 

 
Author Panksepp, J. doi  openurl
  Title Affective consciousness: Core emotional feelings in animals and humans Type Journal Article
  Year 2005 Publication Consciousness and Cognition Abbreviated Journal Conscious Cogn  
  Volume 14 Issue 1 Pages 30-80  
  Keywords Affect/*physiology; Animals; Bonding, Human-Pet; Brain/*physiology; Consciousness/*physiology; Fear; Humans; Limbic System/physiology; Social Behavior; Species Specificity; Unconscious (Psychology)  
  Abstract The position advanced in this paper is that the bedrock of emotional feelings is contained within the evolved emotional action apparatus of mammalian brains. This dual-aspect monism approach to brain-mind functions, which asserts that emotional feelings may reflect the neurodynamics of brain systems that generate instinctual emotional behaviors, saves us from various conceptual conundrums. In coarse form, primary process affective consciousness seems to be fundamentally an unconditional “gift of nature” rather than an acquired skill, even though those systems facilitate skill acquisition via various felt reinforcements. Affective consciousness, being a comparatively intrinsic function of the brain, shared homologously by all mammalian species, should be the easiest variant of consciousness to study in animals. This is not to deny that some secondary processes (e.g., awareness of feelings in the generation of behavioral choices) cannot be evaluated in animals with sufficiently clever behavioral learning procedures, as with place-preference procedures and the analysis of changes in learned behaviors after one has induced re-valuation of incentives. Rather, the claim is that a direct neuroscientific study of primary process emotional/affective states is best achieved through the study of the intrinsic (“instinctual”), albeit experientially refined, emotional action tendencies of other animals. In this view, core emotional feelings may reflect the neurodynamic attractor landscapes of a variety of extended trans-diencephalic, limbic emotional action systems-including SEEKING, FEAR, RAGE, LUST, CARE, PANIC, and PLAY. Through a study of these brain systems, the neural infrastructure of human and animal affective consciousness may be revealed. Emotional feelings are instantiated in large-scale neurodynamics that can be most effectively monitored via the ethological analysis of emotional action tendencies and the accompanying brain neurochemical/electrical changes. The intrinsic coherence of such emotional responses is demonstrated by the fact that they can be provoked by electrical and chemical stimulation of specific brain zones-effects that are affectively laden. For substantive progress in this emerging research arena, animal brain researchers need to discuss affective brain functions more openly. Secondary awareness processes, because of their more conditional, contextually situated nature, are more difficult to understand in any neuroscientific detail. In other words, the information-processing brain functions, critical for cognitive consciousness, are harder to study in other animals than the more homologous emotional/motivational affective state functions of the brain.  
  Address Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA. jpankse@bgnet.bgsu.ed  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1053-8100 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15766890 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4159  
Permanent link to this record
 

 
Author Helton, W.S. doi  openurl
  Title Animal expertise, conscious or not Type Journal Article
  Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 2 Pages 67-74  
  Keywords Animals; *Behavior, Animal; *Cognition; *Consciousness; *Learning; Motor Skills; *Practice (Psychology)  
  Abstract Rossano (Cognition 89:207, 2003) proposes expertise as an indicator of consciousness in humans and other animals. Since there is strong evidence that the development of expertise requires deliberate practice (Ericsson in The road to excellence: the acquisition of expert performance in the arts and sciences, sports and games 1996), and deliberate practice appears to be outside of the bounds of unconscious processing, then any signs of expertise development in an animal are indicators of consciousness. Rossano's argument may lead to an unsolvable debate about animal consciousness while causing researchers to overlook the underlying reality of animal expertise. This article provides evidence indicative of animals meeting each of the three definitions of expertise established in the scientific literature: expertise as a social construction, expertise as exceptional performance, and expertise as knowledge. In addition, cases of deliberate practice by non-human animals are offered. Acknowledging some animals as experts, regardless of consciousness, is warranted by the research findings and would prove useful in solving many issues remaining in the human expertise literature.  
  Address Department of Psychology, Wilmington College, Wilmington, OH 45177, USA, deak_helton@yahoo.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15365876 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2511  
Permanent link to this record
 

 
Author Griffin, D.R.; Speck, G.B. doi  openurl
  Title New evidence of animal consciousness Type Journal Article
  Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 7 Issue 1 Pages 5-18  
  Keywords Animal Communication; Animals; Awareness; *Behavior, Animal; *Consciousness  
  Abstract This paper reviews evidence that increases the probability that many animals experience at least simple levels of consciousness. First, the search for neural correlates of consciousness has not found any consciousness-producing structure or process that is limited to human brains. Second, appropriate responses to novel challenges for which the animal has not been prepared by genetic programming or previous experience provide suggestive evidence of animal consciousness because such versatility is most effectively organized by conscious thinking. For example, certain types of classical conditioning require awareness of the learned contingency in human subjects, suggesting comparable awareness in similarly conditioned animals. Other significant examples of versatile behavior suggestive of conscious thinking are scrub jays that exhibit all the objective attributes of episodic memory, evidence that monkeys sometimes know what they know, creative tool-making by crows, and recent interpretation of goal-directed behavior of rats as requiring simple nonreflexive consciousness. Third, animal communication often reports subjective experiences. Apes have demonstrated increased ability to use gestures or keyboard symbols to make requests and answer questions; and parrots have refined their ability to use the imitation of human words to ask for things they want and answer moderately complex questions. New data have demonstrated increased flexibility in the gestural communication of swarming honey bees that leads to vitally important group decisions as to which cavity a swarm should select as its new home. Although no single piece of evidence provides absolute proof of consciousness, this accumulation of strongly suggestive evidence increases significantly the likelihood that some animals experience at least simple conscious thoughts and feelings. The next challenge for cognitive ethologists is to investigate for particular animals the content of their awareness and what life is actually like, for them.  
  Address Concord Field Station, Harvard University, Old Causeway Road, Bedford, MA 01730, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14658059 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2549  
Permanent link to this record
 

 
Author Spadavecchia, C.; Arendt-Nielsen, L.; Andersen, O.K.; Spadavecchia, L.; Doherr, M.; Schatzmann, U. openurl 
  Title Comparison of nociceptive withdrawal reflexes and recruitment curves between the forelimbs and hind limbs in conscious horses Type Journal Article
  Year 2003 Publication American journal of veterinary research Abbreviated Journal Am J Vet Res  
  Volume 64 Issue 6 Pages 700-707  
  Keywords Animals; Consciousness; Female; Forelimb/*physiology; Hindlimb/*physiology; Horses/*physiology; Male; Nociceptors/physiology; Pain/*physiopathology/*veterinary; Pain Threshold/physiology; Recruitment, Neurophysiological/physiology; Reflex/*physiology  
  Abstract OBJECTIVE: To compare nociceptive withdrawal reflexes (NWRs) evoked from the distal aspect of the left forelimb and hind limb in conscious standing horses and to investigate NWR recruitment for graded electrical stimulation intensities. ANIMALS: 20 adult horses. PROCEDURE: Surface electromyographic (EMG) activity evoked by transcutaneous electrical stimulation of the digital palmar (or plantar) nerve was recorded from the common digital extensor and cranial tibial muscles. Stimuli consisted of 25-millisecond train-of-5 constant current pulses. Current intensity was gradually increased until NWR threshold intensity was reached. The EMG signal was analyzed for quantification of the NWR. Behavioral responses accompanying the reflex were scored (scale, 0 to 5). The NWR recruitment curves were determined at 0.9, 1.1, 1.2, and 1.3 times the NWR threshold intensity. RESULTS: The NWR threshold was significantly higher for the hind limb (median value, 6.6 mA; range, 3 to 10 mA) than the forelimb (median, 3 mA; range, 1.7 to 5.5 mA). The NWR of the hind limb had a significantly longer latency (median, 122.8 milliseconds; range, 106 to 172 milliseconds), compared with the forelimb (median, 98 milliseconds; range, 86 to 137 milliseconds), and it was associated with significantly stronger behavioral reactions. Gradual increase of NWR amplitude was evident at increasing stimulation intensities and supported by the behavioral observations. CONCLUSIONS AND CLINICAL RELEVANCE: We documented NWRs evoked from the forelimb and hind limb and their recruitment with stimuli of increasing intensity in horses. These results provide a basis for use of NWRs in studies on nociceptive modulation in horses.  
  Address Department of Clinical Veterinary Sciences, University of Berne, Switzerland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9645 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12828255 Approved no  
  Call Number refbase @ user @ Serial 93  
Permanent link to this record
 

 
Author Doherty, T.J.; Frazier, D.L. openurl 
  Title Effect of intravenous lidocaine on halothane minimum alveolar concentration in ponies Type Journal Article
  Year 1998 Publication Equine veterinary journal Abbreviated Journal Equine Vet J  
  Volume 30 Issue 4 Pages 300-303  
  Keywords Anesthetics/administration & dosage/blood/*pharmacology; Anesthetics, Inhalation/administration & dosage/*analysis; Animals; Consciousness/drug effects; Dose-Response Relationship, Drug; Halothane/administration & dosage/*analysis; Horses/*physiology; Infusions, Intravenous/veterinary; Lidocaine/administration & dosage/blood/*pharmacology; Male  
  Abstract This study investigated the effect of lidocaine i.v. on halothane minimum alveolar concentration (MAC) in ponies. Six ponies were anaesthetised with thiopentone and succinylcholine, intubated and anaesthesia maintained with halothane. Ventilation was controlled and blood pressure maintained within clinically acceptable limits. Following a 2 h equilibration period, baseline halothane MAC was determined. The ponies were then given a loading dose of lidocaine (2.5 or 5 mg/kg bwt) or saline over 5 min, followed by a constant infusion of lidocaine (50 or 100 microg/kg/min, or saline, respectively). The halothane MAC was redetermined after a 60 min infusion of lidocaine or saline. The baseline halothane MAC for the control group was mean +/- s.d. 0.94 +/- 0.03%, and no significant decrease occurred following saline infusion. Lidocaine decreased halothane MAC in a dose-dependent fashion (r = 0.86; P < 0.0003). The results indicate that i.v. lidocaine may have a role in equine anaesthesia.  
  Address Department of Large Animal Clinical Sciences, University of Tennessee, College of Veterinary Medicine, Knoxville 37901-1071, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9705112 Approved no  
  Call Number refbase @ user @ Serial 95  
Permanent link to this record
 

 
Author Carroll, G.L.; Matthews, N.S.; Hartsfield, S.M.; Slater, M.R.; Champney, T.H.; Erickson, S.W. openurl 
  Title The effect of detomidine and its antagonism with tolazoline on stress-related hormones, metabolites, physiologic responses, and behavior in awake ponies Type Journal Article
  Year 1997 Publication Veterinary surgery : VS : the official journal of the American College of Veterinary Surgeons Abbreviated Journal Vet Surg  
  Volume 26 Issue 1 Pages 69-77  
  Keywords Adrenergic alpha-Antagonists/administration & dosage/*pharmacology; Animals; Behavior, Animal/drug effects/physiology; Blood Glucose/metabolism; Blood Pressure/drug effects/physiology; Consciousness/physiology; Dose-Response Relationship, Drug; Drug Interactions; Epinephrine/blood; Fatty Acids, Nonesterified/blood; Female; Heart Rate/drug effects/physiology; Horse Diseases/metabolism/physiopathology/psychology; Horses/blood/metabolism/*physiology; Hydrocortisone/blood; Hypnotics and Sedatives/administration & dosage/*pharmacology; Imidazoles/administration & dosage/*pharmacology; Injections, Intravenous; Male; Norepinephrine/blood; Receptors, Adrenergic, alpha/drug effects/*physiology; Stress/metabolism/physiopathology/veterinary; Time Factors; Tolazoline/administration & dosage/*pharmacology  
  Abstract Six ponies were used to investigate the effect of tolazoline antagonism of detomidine on physiological responses, behavior, epinephrine, norepinephrine, cortisol, glucose, and free fatty acids in awake ponies. Each pony had a catheter inserted into a jugular vein 1 hour before beginning the study. Awake ponies were administered detomidine (0.04 mg/kg intravenously [i.v.]) followed 20 minutes later by either tolazoline (4.0 mg/kg i.v.) or saline. Blood samples were drawn from the catheter 5 minutes before detomidine administration (baseline), 5 minutes after detomidine administration, 20 minutes before detomidine administration which was immediately before the administration of tolazoline or saline (time [T] = 0), and at 5, 30, and 60 minutes after injections of tolazoline or saline (T = 5, 30, and 60 minutes, respectively). Compared with heart rate at T = 0, tolazoline antagonism increased heart rate 45% at 5 minutes. There was no difference in heart rate between treatments at 30 minutes. Blood pressure remained stable after tolazoline, while it decreased over time after saline. Compared with concentrations at T = 0, tolazoline antagonism of detomidine in awake ponies resulted in a 55% increase in cortisol at 30 minutes and a 52% increase in glucose at 5 minutes. The change in free fatty acids was different for tolazoline and saline over time. Free fatty acids decreased after detomidine administration. Free fatty acids did not change after saline administration. After tolazoline administration, free fatty acids increased transiently. Tolazoline tended to decrease sedation and analgesia at 15 and 60 minutes postantagonism. Antagonism of detomidine-induced physiological and behavioral effects with tolazoline in awake ponies that were not experiencing pain appears to precipitate a stress response as measured by cortisol, glucose, and free fatty acids. If antagonism of an alpha-agonist is contemplated, the potential effect on hormones and metabolites should be considered.  
  Address Department of Small Animal Medicine and Surgery, Texas A&M University, College Station, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0161-3499 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9123816 Approved no  
  Call Number refbase @ user @ Serial 96  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print