toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Martin, T.I.; Zentall, T.R. doi  openurl
  Title Post-choice information processing by pigeons Type Journal Article
  Year 2005 Publication (up) Animal cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 4 Pages 273-278  
  Keywords Animals; *Behavior, Animal; *Choice Behavior; *Columbidae; Discrimination Learning  
  Abstract In a conditional discrimination (matching-to-sample), a sample is followed by two comparison stimuli, one of which is correct, depending on the sample. Evidence from previous research suggests that if the stimulus display is maintained following an incorrect response (the so-called penalty-time procedure), acquisition by pigeons is facilitated. The present research tested the hypothesis that the penalty-time procedure allows the pigeons to review and learn from the maintained stimulus display following an incorrect choice. It did so by including a penalty-time group for which, following an incorrect choice, the sample changed to match the incorrect comparison, thus providing the pigeons with post-choice 'misinformation.' This misinformation group acquired the matching task significantly slower than the standard penalty-time group (that had no change in the sample following an error). Furthermore, acquisition of matching by a control group that received no penalty time fell midway between the other two groups, suggesting that the pigeons did not merely take more care in making choices because of the aversiveness of penalty-time. Thus, it appears that in the acquisition of matching-to-sample, when the stimulus display is maintained following an incorrect choice, the pigeons can review or acquire information from the display. This is the first time that such an effect has been reported for a nonhuman species.  
  Address Department of Psychology, University of Kentucky, Lexington, KY 40506, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15744507 Approved no  
  Call Number refbase @ user @ Serial 225  
Permanent link to this record
 

 
Author Bouchard, J.; Goodyer, W.; Lefebvre, L. doi  openurl
  Title Social learning and innovation are positively correlated in pigeons (Columba livia) Type Journal Article
  Year 2007 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 2 Pages 259-266  
  Keywords Animals; Behavior, Animal/*physiology; Columbidae/*physiology; *Learning; *Problem Solving  
  Abstract When animals show both frequent innovation and fast social learning, new behaviours can spread more rapidly through populations and potentially increase rates of natural selection and speciation, as proposed by A.C. Wilson in his behavioural drive hypothesis. Comparative work on primates suggests that more innovative species also show more social learning. In this study, we look at intra-specific variation in innovation and social learning in captive wild-caught pigeons. Performances on an innovative problem-solving task and a social learning task are positively correlated in 42 individuals. The correlation remains significant when the effects of neophobia on the two abilities are removed. Neither sex nor dominance rank are associated with performance on the two tasks. Free-flying flocks of urban pigeons are able to solve the innovative food-finding problem used on captive birds, demonstrating it is within the range of their natural capacities. Taken together with the comparative literature, the positive correlation between innovation and social learning suggests that the two abilities are not traded-off.  
  Address Department of Biology, McGill University, 1205, Avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17205290 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2425  
Permanent link to this record
 

 
Author Petruso, E.J.; Fuchs, T.; Bingman, V.P. doi  openurl
  Title Time-space learning in homing pigeons (Columba livia): orientation to an artificial light source Type Journal Article
  Year 2007 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 2 Pages 181-188  
  Keywords Animals; Circadian Rhythm; Columbidae/*physiology; Homing Behavior/physiology; Learning/*physiology; *Light; Orientation/*physiology; Space Perception/*physiology; Time Perception/*physiology  
  Abstract Time-space learning reflects an ability to represent in memory event-stimulus properties together with the place and time of the event; a capacity well developed in birds. Homing pigeons were trained in an indoor octagonal arena to locate one food goal in the morning and a different food goal in the late afternoon. The goals differed with respect to their angular/directional relationship to an artificial light source located outside the arena. Further, the angular difference in reward position approximated the displacement of the sun's azimuth that would occur during the same time period. The experimental birds quickly learned the task, demonstrating the apparent ease with which birds can adopt an artificial light source to discriminate among alternative spatial responses at different times of the day. However, a novel midday probe session following successful learning revealed that the light source was interpreted as a stable landmark and not as a surrogate sun that would support compass orientation. Probe sessions following a phase shift of the light-dark cycle revealed that the mechanism employed to make the temporal discrimination was prevailingly based on an endogenous circadian rhythm and not an interval timing mechanism.  
  Address Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior Bowling Green State University, Bowling Green, OH 43403, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17160343 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2432  
Permanent link to this record
 

 
Author Watanabe, S.; Troje, N.F. doi  openurl
  Title Towards a “virtual pigeon”: a new technique for investigating avian social perception Type Journal Article
  Year 2006 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 271-279  
  Keywords Animals; Behavioral Research/instrumentation/methods; Columbidae/*physiology; Computer Graphics; *Computer Simulation; Discrimination Learning/*physiology; Generalization (Psychology)/*physiology; Pattern Recognition, Visual/*physiology; Perceptual Masking/physiology; Rats; Recognition (Psychology)/physiology; *Social Behavior; User-Computer Interface  
  Abstract The purpose of the present study is to examine the applicability of a computer-generated, virtual animal to study animal cognition. Pigeons were trained to discriminate between movies of a real pigeon and a rat. Then, they were tested with movies of the computer-generated (CG) pigeon. Subjects showed generalization to the CG pigeon, however, they also responded to modified versions in which the CG pigeon was showing impossible movement, namely hopping and walking without its head bobbing. Hence, the pigeons did not attend to these particular details of the display. When they were trained to discriminate between the normal and the modified version of the CG pigeon, they were able to learn the discrimination. The results of an additional partial occlusion test suggest that the subjects used head movement as a cue for the usual vs. unusual CG pigeon discrimination.  
  Address Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, 108, Japan. swat@flet.keio.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17024508 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2437  
Permanent link to this record
 

 
Author Lea, S.E.G.; Goto, K.; Osthaus, B.; Ryan, C.M.E. doi  openurl
  Title The logic of the stimulus Type Journal Article
  Year 2006 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 247-256  
  Keywords Animals; Behavior, Animal/*physiology; Cognition/*physiology; Columbidae; Comprehension/physiology; Dogs; Humans; *Logic; Pattern Recognition, Visual/physiology; Perception/*physiology; Problem Solving/*physiology; Species Specificity  
  Abstract This paper examines the contribution of stimulus processing to animal logics. In the classic functionalist S-O-R view of learning (and cognition), stimuli provide the raw material to which the organism applies its cognitive processes-its logic, which may be taxon-specific. Stimuli may contribute to the logic of the organism's response, and may do so in taxon-specific ways. Firstly, any non-trivial stimulus has an internal organization that may constrain or bias the way that the organism addresses it; since stimuli can only be defined relative to the organism's perceptual apparatus, and this apparatus is taxon-specific, such constraints or biases will often be taxon-specific. Secondly, the representation of a stimulus that the perceptual system builds, and the analysis it makes of this representation, may provide a model for the synthesis and analysis done at a more cognitive level. Such a model is plausible for evolutionary reasons: perceptual analysis was probably perfected before cognitive analysis in the evolutionary history of the vertebrates. Like stimulus-driven analysis, such perceptually modelled cognition may be taxon-specific because of the taxon-specificity of the perceptual apparatus. However, it may also be the case that different taxa are able to free themselves from the stimulus logic, and therefore apply a more abstract logic, to different extents. This thesis is defended with reference to two examples of cases where animals' cognitive logic seems to be isomorphic with perceptual logic, specifically in the case of pigeons' attention to global and local information in visual stimuli, and dogs' failure to comprehend means-end relationships in string-pulling tasks.  
  Address School of Psychology, Washington Singer Laboratories, University of Exeter, Exeter, EX4 4QG, United Kingdom. s.e.g.lea@exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16909234 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2450  
Permanent link to this record
 

 
Author Blaisdell, A.P.; Cook, R.G. doi  openurl
  Title Integration of spatial maps in pigeons Type Journal Article
  Year 2005 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 1 Pages 7-16  
  Keywords Animals; Appetitive Behavior/physiology; Association Learning/*physiology; Columbidae/*physiology; Conditioning, Classical/physiology; *Cues; Problem Solving/*physiology; Space Perception/*physiology; Spatial Behavior/physiology  
  Abstract The integration of spatial maps in pigeons was investigated using a spatial analog to sensory preconditioning. The pigeons were tested in an open-field arena in which they had to locate hidden food among a 4x4 grid of gravel-filled cups. In phase 1, the pigeons were exposed to a consistent spatial relationship (vector) between landmark L (a red L-shaped block of wood), landmark T (a blue T-shaped block of wood) and the hidden food goal. In phase 2, the pigeons were then exposed to landmark T with a different spatial vector to the hidden food goal. Following phase 2, pigeons were tested with trials on which they were presented with only landmark L to examine the potential integration of the phase 1 and 2 vectors via their shared common elements. When these test trials were preceded by phase 1 and phase 2 reminder trials, pigeons searched for the goal most often at a location consistent with their integration of the L-->T phase 1 and T-->phase 2 goal vectors. This result indicates that integration of spatial vectors acquired during phases 1 and 2 allowed the pigeons to compute a novel L-->goal vector. This suggests that spatial maps may be enlarged by successively integrating additional spatial information through the linkage of common elements.  
  Address Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA. blaisdell@psych.ucla.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15221636 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2521  
Permanent link to this record
 

 
Author Goto, K.; Wills, A.J.; Lea, S.E.G. doi  openurl
  Title Global-feature classification can be acquired more rapidly than local-feature classification in both humans and pigeons Type Journal Article
  Year 2004 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 7 Issue 2 Pages 109-113  
  Keywords Adult; Animals; Behavior, Animal/physiology; *Classification; Columbidae/*physiology; *Discrimination Learning; Form Perception; Humans; *Mental Processes; *Pattern Recognition, Visual; Species Specificity  
  Abstract When humans process visual stimuli, global information often takes precedence over local information. In contrast, some recent studies have pointed to a local precedence effect in both pigeons and nonhuman primates. In the experiment reported here, we compared the speed of acquisition of two different categorizations of the same four geometric figures. One categorization was on the basis of a local feature, the other on the basis of a readily apparent global feature. For both humans and pigeons, the global-feature categorization was acquired more rapidly. This result reinforces the conclusion that local information does not always take precedence over global information in nonhuman animals.  
  Address School of Psychology, Washington Singer Laboratories, University of Exeter, EX4 4QG, Exeter, UK. K.Goto@exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15069610 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2530  
Permanent link to this record
 

 
Author Fairhurst, S.; Gallistel, C.R.; Gibbon, J. doi  openurl
  Title Temporal landmarks: proximity prevails Type Journal Article
  Year 2003 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 6 Issue 2 Pages 113-120  
  Keywords Animals; Columbidae; Conditioning, Operant; Reaction Time; *Time Perception  
  Abstract Subjects in conditioning experiments time their conditioned responses relative to the onsets of the conditioned stimuli (CSs). These onsets are temporal landmarks, by reference to which subjects may estimate the location of the unconditioned stimulus (US) in time. In a serial compound conditioning paradigm, a long duration CS comes on first, followed later by a second shorter CS, creating both a long-range and a short-range predictor of the US. We ask whether displacing the short-range predictor relative to the long-range predictor causes subjects to strike a compromise between the different temporal locations predicted by the two CSs. In three experiments with pigeons, we varied the training conditions so as to favor or militate against this outcome. However, in all conditions, there was no compromise; after the onset of the displaced short-range CS, the timing of conditioned responding was governed by it alone. This result contrasts with the compromises that are seen when the feeding time predicted by a CS is put in conflict with the time predicted by the circadian clock, and with the similar compromises sometimes seen when a nearby spatial landmark is displaced relative to a larger spatial context.  
  Address New York State Psychiatric Institute, 1051 Riverside Dr., Unit 50, New York, NY 10032, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12720110 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2573  
Permanent link to this record
 

 
Author Fremouw, T.; Herbranson, W.T.; Shimp, C.P. doi  openurl
  Title Dynamic shifts of pigeon local/global attention Type Journal Article
  Year 2002 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 5 Issue 4 Pages 233-243  
  Keywords Animals; Attention/*physiology; *Behavior, Animal; Columbidae/*physiology; Male; Reaction Time; Visual Perception/*physiology  
  Abstract It has previously been shown that pigeons can shift attention between parts and wholes of complex stimuli composed of larger, “global” characters constructed from smaller, “local” characters. The base-rate procedure used biased target level within any condition at either the local or global level; targets were more likely at one level than at the other. Biasing of target level in this manner demonstrated shifts of local/global attention over a time span consisting of several days with a fixed base rate. Experiment 1 examined the possibility that pigeons can shift attention between local and global levels of perceptual analysis in seconds rather than days. The experiment used priming cues the color of which predicted on a trial-by-trial basis targets at different perceptual levels. The results confirmed that pigeons, like humans, can display highly dynamic stimulus-driven shifts of local/global attention. Experiment 2 changed spatial relations between features of priming cues and features of targets within a task otherwise similar to that used in experiment 1. It was predicted that this change in cues might affect asymmetry but not the occurrence of a priming effect. A priming effect was again obtained, thereby providing generality to the claim that pigeons can learn that trial-by-trial primes predict targets at different levels of perceptual analysis. Pigeons can display perceptual, stimulus-driven priming of a highly dynamic nature.  
  Address Department of Psychology, University of California-Berkeley, Berkeley, CA 94720-1650, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12461601 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2589  
Permanent link to this record
 

 
Author Goto, K.; Lea, S.E.G.; Dittrich, W.H. doi  openurl
  Title Discrimination of intentional and random motion paths by pigeons Type Journal Article
  Year 2002 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 5 Issue 3 Pages 119-127  
  Keywords Animals; *Columbidae; *Discrimination Learning; *Motion Perception; Recognition (Psychology)  
  Abstract Twelve pigeons ( Columba livia) were trained on a go/no-go schedule to discriminate between two kinds of movement patterns of dots, which to human observers appear to be “intentional” and “non-intentional” movements. In experiment 1, the intentional motion stimulus contained one dot (a “wolf”) that moved systematically towards another dot as though stalking it, and three distractors (“sheep”). The non-intentional motion stimulus consisted of four distractors but no stalker. Birds showed some improvement of discrimination as the sessions progressed, but high levels of discrimination were not reached. In experiment 2, the same birds were tested with different stimuli. The same parameters were used but the number of intentionally moving dots in the intentional motion stimulus was altered, so that three wolves stalked one sheep. Despite the enhanced difference of movement patterns, the birds did not show any further improvement in discrimination. However, birds for which the non-intentional stimulus was associated with reward showed a decline in discrimination. These results indicated that pigeons can discriminate between stimuli that do and do not contain an element that human observer see as moving intentionally. However, as no feature-positive effect was found in experiment 1, it is assumed that pigeons did not perceive or discriminate these stimuli on the basis that the intentional stimuli contained a feature that the non-intentional stimuli lacked, though the convergence seen in experiment 2 may have been an effective feature for the pigeons. Pigeons seem to be able to recognise some form of multiple simultaneously goal-directed motions, compared to random motions, as a distinctive feature, but do not seem to use simple “intentional” motion paths of two geometrical figures, embedded in random motions, as a feature whose presence or absence differentiates motion displays.  
  Address School of Psychology, University of Exeter, Washington Singer Laboratories, Exeter EX4 4QG, UK. K.Goto@exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12357284 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2601  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print