|   | 
Details
   web
Records
Author Macphail, E.M.
Title Cognitive function in mammals: the evolutionary perspective Type Journal Article
Year 1996 Publication Brain research. Cognitive brain research Abbreviated Journal Brain Res Cogn Brain Res
Volume (up) 3 Issue 3-4 Pages 279-290
Keywords Animals; Cognition/*physiology; Conditioning (Psychology)/*physiology; Evolution; Humans; Learning/*physiology; Task Performance and Analysis
Abstract The work of behavioural pharmacologists has concentrated on small animals, such as rodents and pigeons. The validity of extrapolation of their findings to humans depends upon the existence of parallels in both physiology and psychology between these animals and humans. This paper considers the question whether there are in fact substantial cognitive parallels between, first, different non-human groups of vertebrates and, second, non-humans and humans. Behavioural data from 'simple' tasks, such as habituation and conditioning, do not point to species differences among vertebrates. Using examples that concentrate on the performance of rodents and birds, it is argued that, similarly, data from more complex tasks (learning-set formation, transitive inference, and spatial memory serve as examples) reveal few if any cognitive differences amongst non-human vertebrates. This conclusion supports the notion that association formation may be the critical problem-solving process available to non-human animals; associative mechanisms are assumed to have evolved to detect causal links between events, and would therefore be relevant in all ecological niches. In agreement with this view, recent advances in comparative neurology show striking parallels in functional organisation of mammalian and avian telencephalon. Finally, it is argued that although the peculiarly human capacity for language marks a large cognitive contrast between humans and non-humans, there is good evidence-in particular, from work on implicit learning--that the learning mechanisms available to non--humans are present and do play an important role in human cognition.
Address Department of Psychology, University of York at Heslington, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-6410 ISBN Medium
Area Expedition Conference
Notes PMID:8806029 Approved no
Call Number refbase @ user @ Serial 603
Permanent link to this record
 

 
Author Call, J.
Title A fish-eye lens for comparative studies: broadening the scope of animal cognition Type Journal Article
Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume (up) 5 Issue 1 Pages 15-16
Keywords Animals; Behavior, Animal/physiology; Cognition/*physiology; Fishes/*physiology; Species Specificity
Abstract ? is the article no longer available?
Address call@eva.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:11957396 Approved no
Call Number Equine Behaviour @ team @ Serial 2616
Permanent link to this record
 

 
Author Bshary, R.; Wickler, W.; Fricke, H.
Title Fish cognition: a primate's eye view Type Journal Article
Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume (up) 5 Issue 1 Pages 1-13
Keywords Animals; Cognition/*physiology; Evolution; Fishes/*physiology; Intelligence; Learning; Primates/*physiology; Social Behavior
Abstract We provide selected examples from the fish literature of phenomena found in fish that are currently being examined in discussions of cognitive abilities and evolution of neocortex size in primates. In the context of social intelligence, we looked at living in individualized groups and corresponding social strategies, social learning and tradition, and co-operative hunting. Regarding environmental intelligence, we searched for examples concerning special foraging skills, tool use, cognitive maps, memory, anti-predator behaviour, and the manipulation of the environment. Most phenomena of interest for primatologists are found in fish as well. We therefore conclude that more detailed studies on decision rules and mechanisms are necessary to test for differences between the cognitive abilities of primates and other taxa. Cognitive research can benefit from future fish studies in three ways: first, as fish are highly variable in their ecology, they can be used to determine the specific ecological factors that select for the evolution of specific cognitive abilities. Second, for the same reason they can be used to investigate the link between cognitive abilities and the enlargement of specific brain areas. Third, decision rules used by fish could be used as 'null-hypotheses' for primatologists looking at how monkeys might make their decisions. Finally, we propose a variety of fish species that we think are most promising as study objects.
Address University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK. rb286@cam.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:11957395 Approved no
Call Number Equine Behaviour @ team @ Serial 2617
Permanent link to this record
 

 
Author Hayashi, M.; Matsuzawa, T.
Title Cognitive development in object manipulation by infant chimpanzees Type Journal Article
Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume (up) 6 Issue 4 Pages 225-233
Keywords Age Factors; Animals; Child Development/physiology; Child, Preschool; Cognition/*physiology; Female; Growth; Humans; Imitative Behavior/physiology; Infant; Learning/*physiology; Male; Mothers/*psychology; Motor Skills/*physiology; Pan troglodytes/*growth & development/*psychology; Psychomotor Performance/*physiology; Species Specificity
Abstract This study focuses on the development of spontaneous object manipulation in three infant chimpanzees during their first 2 years of life. The three infants were raised by their biological mothers who lived among a group of chimpanzees. A human tester conducted a series of cognitive tests in a triadic situation where mothers collaborated with the researcher during the testing of the infants. Four tasks were presented, taken from normative studies of cognitive development of Japanese infants: inserting objects into corresponding holes in a box, seriating nesting cups, inserting variously shaped objects into corresponding holes in a template, and stacking up wooden blocks. The mothers had already acquired skills to perform these manipulation tasks. The infants were free to observe the mothers' manipulative behavior from immediately after birth. We focused on object-object combinations that were made spontaneously by the infant chimpanzees, without providing food reinforcement for any specific behavior that the infants performed. The three main findings can be summarized as follows. First, there was precocious appearance of object-object combination in infant chimpanzees: the age of onset (8-11 months) was comparable to that in humans (around 10 months old). Second, object-object combinations in chimpanzees remained at a low frequency between 11 and 16 months, then increased dramatically at the age of approximately 1.5 years. At the same time, the accuracy of these object-object combinations also increased. Third, chimpanzee infants showed inserting behavior frequently and from an early age but they did not exhibit stacking behavior during their first 2 years of life, in clear contrast to human data.
Address Section of Language and Intelligence, Primate Research Institute, Kyoto University, 41 Kanrin, Inuyama, 484-8506 Aichi, Japan. misato@pri.kyoto-u.ac.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:12905079 Approved no
Call Number Equine Behaviour @ team @ Serial 2559
Permanent link to this record
 

 
Author Hare, B.; Tomasello, M.
Title Human-like social skills in dogs? Type Journal Article
Year 2005 Publication Trends in Cognitive Sciences Abbreviated Journal Trends. Cognit. Sci.
Volume (up) 9 Issue 9 Pages 439-444
Keywords *Animal Communication; Animals; *Behavior, Animal; Cognition/*physiology; Dogs; *Evolution; Humans; *Social Behavior
Abstract Domestic dogs are unusually skilled at reading human social and communicative behavior--even more so than our nearest primate relatives. For example, they use human social and communicative behavior (e.g. a pointing gesture) to find hidden food, and they know what the human can and cannot see in various situations. Recent comparisons between canid species suggest that these unusual social skills have a heritable component and initially evolved during domestication as a result of selection on systems mediating fear and aggression towards humans. Differences in chimpanzee and human temperament suggest that a similar process may have been an important catalyst leading to the evolution of unusual social skills in our own species. The study of convergent evolution provides an exciting opportunity to gain further insights into the evolutionary processes leading to human-like forms of cooperation and communication.
Address Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany. hare@eva.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-6613 ISBN Medium
Area Expedition Conference
Notes PMID:16061417 Approved no
Call Number refbase @ user @ Serial 546
Permanent link to this record
 

 
Author Benard, J.; Stach, S.; Giurfa, M.
Title Categorization of visual stimuli in the honeybee Apis mellifera Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume (up) 9 Issue 4 Pages 257-270
Keywords Animals; Bees/*physiology; Classification; Cognition/*physiology; Discrimination Learning/*physiology; Generalization, Stimulus/physiology; Pattern Recognition, Visual/*physiology; Photic Stimulation; Transfer (Psychology)/*physiology; Visual Perception/*physiology
Abstract Categorization refers to the classification of perceptual input into defined functional groups. We present and discuss evidence suggesting that stimulus categorization can also be found in an invertebrate, the honeybee Apis mellifera, thus underlining the generality across species of this cognitive process. Honeybees show positive transfer of appropriate responding from a trained to a novel set of visual stimuli. Such a transfer was demonstrated for specific isolated features such as symmetry or orientation, but also for assemblies (layouts) of features. Although transfer from training to novel stimuli can be achieved by stimulus generalization of the training stimuli, most of these transfer tests involved clearly distinguishable stimuli for which generalization would be reduced. Though in most cases specific experimental controls such as stimulus balance and discriminability are still required, it seems appropriate to characterize the performance of honeybees as reflecting categorization. Further experiments should address the issue of which categorization theory accounts better for the visual performances of honeybees.
Address Centre de Recherches sur la Cognition Animale (UMR 5169), CNRS – Universite Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 4, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16909238 Approved no
Call Number Equine Behaviour @ team @ Serial 2446
Permanent link to this record
 

 
Author Lea, S.E.G.; Goto, K.; Osthaus, B.; Ryan, C.M.E.
Title The logic of the stimulus Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume (up) 9 Issue 4 Pages 247-256
Keywords Animals; Behavior, Animal/*physiology; Cognition/*physiology; Columbidae; Comprehension/physiology; Dogs; Humans; *Logic; Pattern Recognition, Visual/physiology; Perception/*physiology; Problem Solving/*physiology; Species Specificity
Abstract This paper examines the contribution of stimulus processing to animal logics. In the classic functionalist S-O-R view of learning (and cognition), stimuli provide the raw material to which the organism applies its cognitive processes-its logic, which may be taxon-specific. Stimuli may contribute to the logic of the organism's response, and may do so in taxon-specific ways. Firstly, any non-trivial stimulus has an internal organization that may constrain or bias the way that the organism addresses it; since stimuli can only be defined relative to the organism's perceptual apparatus, and this apparatus is taxon-specific, such constraints or biases will often be taxon-specific. Secondly, the representation of a stimulus that the perceptual system builds, and the analysis it makes of this representation, may provide a model for the synthesis and analysis done at a more cognitive level. Such a model is plausible for evolutionary reasons: perceptual analysis was probably perfected before cognitive analysis in the evolutionary history of the vertebrates. Like stimulus-driven analysis, such perceptually modelled cognition may be taxon-specific because of the taxon-specificity of the perceptual apparatus. However, it may also be the case that different taxa are able to free themselves from the stimulus logic, and therefore apply a more abstract logic, to different extents. This thesis is defended with reference to two examples of cases where animals' cognitive logic seems to be isomorphic with perceptual logic, specifically in the case of pigeons' attention to global and local information in visual stimuli, and dogs' failure to comprehend means-end relationships in string-pulling tasks.
Address School of Psychology, Washington Singer Laboratories, University of Exeter, Exeter, EX4 4QG, United Kingdom. s.e.g.lea@exeter.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16909234 Approved no
Call Number Equine Behaviour @ team @ Serial 2450
Permanent link to this record
 

 
Author Watanabe, S.; Huber, L.
Title Animal logics: decisions in the absence of human language Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume (up) 9 Issue 4 Pages 235-245
Keywords *Animal Communication; Animals; Behavior, Animal/*physiology; Brain/physiology; Cognition/*physiology; Decision Making/*physiology; Evolution; Humans; *Language; *Logic; Problem Solving/physiology
Abstract Without Abstract
Address Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo 108, Japan. swat@flet.keio.ac.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16909231 Approved no
Call Number Equine Behaviour @ team @ Serial 2453
Permanent link to this record
 

 
Author Gomez, J.-C.
Title Species comparative studies and cognitive development Type Journal Article
Year 2005 Publication Trends in Cognitive Sciences Abbreviated Journal Trends. Cognit. Sci.
Volume (up) 9 Issue 3 Pages 118-125
Keywords Animals; Attention/physiology; Brain/*growth & development; Child, Preschool; Cognition/*physiology; Concept Formation/physiology; Dogs; Evolution; Fixation, Ocular; Gorilla gorilla; Humans; Infant; Learning/*physiology; Macaca mulatta; Mental Recall/physiology; Personal Construct Theory; Psychomotor Performance/physiology; Species Specificity
Abstract The comparative study of infant development and animal cognition brings to cognitive science the promise of insights into the nature and origins of cognitive skills. In this article, I review a recent wave of comparative studies conducted with similar methodologies and similar theoretical frameworks on how two core components of human cognition--object permanence and gaze following--develop in different species. These comparative findings call for an integration of current competing accounts of developmental change. They further suggest that evolution has produced developmental devices capable at the same time of preserving core adaptive components, and opening themselves up to further adaptive change, not only in interaction with the external environment, but also in interaction with other co-developing cognitive systems.
Address Scottish Primate Research Group, School of Psychology, University of St Andrews, St Andrews, Fife KY15 9JU, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-6613 ISBN Medium
Area Expedition Conference
Notes PMID:15737820 Approved no
Call Number Equine Behaviour @ team @ Serial 2851
Permanent link to this record
 

 
Author Tebbich, S.; Seed, A.M.; Emery, N.J.; Clayton, N.S.
Title Non-tool-using rooks, Corvus frugilegus, solve the trap-tube problem Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume (up) 10 Issue 2 Pages 225-231
Keywords Animals; Behavior, Animal/*physiology; Cognition/*physiology; Crows/*physiology; Female; Male; Problem Solving/*physiology
Abstract The trap-tube problem is used to assess whether an individual is able to foresee the outcome of its actions. To solve the task, an animal must use a tool to push a piece of food out of a tube, which has a trap along its length. An animal may learn to avoid the trap through a rule based on associative processes, e.g. using the distance of trap or food as a cue, or by understanding relations between cause and effect. This task has been used to test physical cognition in a number of tool-using species, but never a non-tool-user. We developed an experimental design that enabled us to test non-tool-using rooks, Corvus frugilegus. Our modification of the task removed the cognitive requirements of active tool use but still allowed us to test whether rooks can solve the trap-tube problem, and if so how. Additionally, we developed two new control tasks to determine whether rooks were able to transfer knowledge to similar, but novel problems, thus revealing more about the mechanisms involved in solving the task. We found that three out of seven rooks solved the modified trap-tube problem task, showing that the ability to solve the trap-tube problem is not restricted to tool-using animals. We found no evidence that the birds solved the task using an understanding of its causal properties, given that none of the birds passed the novel transfer tasks.
Address Department of Experimental Psychology, University of Cambridge, Cambridge, CB2 3EB, UK. st281@cam.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:17171360 Approved no
Call Number Equine Behaviour @ team @ Serial 2429
Permanent link to this record