|   | 
Details
   web
Records
Author Marino, L.
Title Convergence of complex cognitive abilities in cetaceans and primates Type Journal Article
Year 2002 Publication Brain, Behavior and Evolution Abbreviated Journal Brain Behav Evol
Volume 59 Issue 1-2 Pages 21-32
Keywords (up) Animal Communication; Animals; Brain/physiology; Cerebral Cortex/physiology; Cetacea/*physiology; Cognition/*physiology; *Evolution; Humans; Intelligence; Primates/*physiology
Abstract What examples of convergence in higher-level complex cognitive characteristics exist in the animal kingdom? In this paper I will provide evidence that convergent intelligence has occurred in two distantly related mammalian taxa. One of these is the order Cetacea (dolphins, whales and porpoises) and the other is our own order Primates, and in particular the suborder anthropoid primates (monkeys, apes, and humans). Despite a deep evolutionary divergence, adaptation to physically dissimilar environments, and very different neuroanatomical organization, some primates and cetaceans show striking convergence in social behavior, artificial 'language' comprehension, and self-recognition ability. Taken together, these findings have important implications for understanding the generality and specificity of those processes that underlie cognition in different species and the nature of the evolution of intelligence.
Address Neuroscience and Behavioral Biology Program, Emory University, Atlanta, Ga. 30322, USA. lmarino@emory.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:12097858 Approved no
Call Number Equine Behaviour @ team @ Serial 4158
Permanent link to this record
 

 
Author Hare, B.; Plyusnina, I.; Ignacio, N.; Schepina, O.; Stepika, A.; Wrangham, R.; Trut, L.
Title Social cognitive evolution in captive foxes is a correlated by-product of experimental domestication Type Journal Article
Year 2005 Publication Current biology : CB Abbreviated Journal Curr Biol
Volume 15 Issue 3 Pages 226-230
Keywords (up) Animals; *Animals, Domestic; Cognition/*physiology; *Cues; *Evolution; Foxes/*physiology; *Selection (Genetics); Social Behavior; Species Specificity
Abstract Dogs have an unusual ability for reading human communicative gestures (e.g., pointing) in comparison to either nonhuman primates (including chimpanzees) or wolves . Although this unusual communicative ability seems to have evolved during domestication , it is unclear whether this evolution occurred as a result of direct selection for this ability, as previously hypothesized , or as a correlated by-product of selection against fear and aggression toward humans--as is the case with a number of morphological and physiological changes associated with domestication . We show here that fox kits from an experimental population selectively bred over 45 years to approach humans fearlessly and nonaggressively (i.e., experimentally domesticated) are not only as skillful as dog puppies in using human gestures but are also more skilled than fox kits from a second, control population not bred for tame behavior (critically, neither population of foxes was ever bred or tested for their ability to use human gestures) . These results suggest that sociocognitive evolution has occurred in the experimental foxes, and possibly domestic dogs, as a correlated by-product of selection on systems mediating fear and aggression, and it is likely the observed social cognitive evolution did not require direct selection for improved social cognitive ability.
Address Department of Anthropology, Harvard University, Cambridge, MA 02138, USA. hare@eva.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:15694305 Approved no
Call Number refbase @ user @ Serial 594
Permanent link to this record
 

 
Author Heschl, A.; Burkart, J.
Title A new mark test for mirror self-recognition in non-human primates Type Journal Article
Year 2006 Publication Primates Abbreviated Journal Primates
Volume 47 Issue 3 Pages 187-198
Keywords (up) Animals; *Behavior, Animal; Callithrix/*physiology; Cognition/*physiology; Discrimination (Psychology)/physiology; Female; Male; Photic Stimulation; *Self Concept
Abstract For 30 years Gallup's (Science 167:86-87, 1970) mark test, which consists of confronting a mirror-experienced test animal with its own previously altered mirror image, usually a color mark on forehead, eyebrow or ear, has delivered valuable results about the distribution of visual self-recognition in non-human primates. Chimpanzees, bonobos, orangutans and, less frequently, gorillas can learn to correctly understand the reflection of their body in a mirror. However, the standard version of the mark test is good only for positively proving the existence of self-recognition. Conclusive statements about the lack of self-recognition are more difficult because of the methodological constraints of the test. This situation has led to a persistent controversy about the power of Gallup's original technique. We devised a new variant of the test which permits more unequivocal decisions about both the presence and absence of self-recognition. This new procedure was tested with marmoset monkeys (Callithrix jacchus), following extensive training with mirror-related tasks to facilitate performance in the standard mark test. The results show that a slightly altered mark test with a new marking substance (chocolate cream) can help to reliably discriminate between true negative results, indicating a real lack of ability to recognize oneself in a mirror, from false negative results that are due to methodological particularities of the standard test. Finally, an evolutionary hypothesis is put forward as to why many primates can use a mirror instrumentally – i.e. know how to use it for grasping at hidden objects – while failing in the decisive mark test.
Address Konrad Lorenz Institute for Evolution and Cognition Research, Adolf Lorenz Gasse 2, 3422, Altenberg, Austria. adolf.heschl@uni-graz.at
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0032-8332 ISBN Medium
Area Expedition Conference
Notes PMID:16432640 Approved no
Call Number Equine Behaviour @ team @ Serial 2810
Permanent link to this record
 

 
Author Branchi, I.; Bichler, Z.; Berger-Sweeney, J.; Ricceri, L.
Title Animal models of mental retardation: from gene to cognitive function Type Journal Article
Year 2003 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev
Volume 27 Issue 1-2 Pages 141-153
Keywords (up) Animals; Animals, Genetically Modified/growth & development; Behavior/physiology; Behavior, Animal; Brain/*growth & development; Cognition/*physiology; *Disease Models, Animal; Environment; Genes; Genetic Diseases, Inborn/physiopathology; Humans; Mental Retardation/classification/*genetics/*physiopathology
Abstract About 2-3% of all children are affected by mental retardation, and genetic conditions rank among the leading causes of mental retardation. Alterations in the information encoded by genes that regulate critical steps of brain development can disrupt the normal course of development, and have profound consequences on mental processes. Genetically modified mouse models have helped to elucidate the contribution of specific gene alterations and gene-environment interactions to the phenotype of several forms of mental retardation. Mouse models of several neurodevelopmental pathologies, such as Down and Rett syndromes and X-linked forms of mental retardation, have been developed. Because behavior is the ultimate output of brain, behavioral phenotyping of these models provides functional information that may not be detectable using molecular, cellular or histological evaluations. In particular, the study of ontogeny of behavior is recommended in mouse models of disorders having a developmental onset. Identifying the role of specific genes in neuropathologies provides a framework in which to understand key stages of human brain development, and provides a target for potential therapeutic intervention.
Address Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Roma, Italy. branchi@iss.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0149-7634 ISBN Medium
Area Expedition Conference
Notes PMID:12732230 Approved no
Call Number Equine Behaviour @ team @ Serial 2805
Permanent link to this record
 

 
Author Pickens, C.L.; Holland, P.C.
Title Conditioning and cognition Type Journal Article
Year 2004 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev
Volume 28 Issue 7 Pages 651-661
Keywords (up) Animals; Association Learning/physiology; Cognition/*physiology; Conditioning (Psychology)/*physiology; Discrimination Learning/physiology; Humans; Memory; Models, Psychological; Reinforcement (Psychology); Visual Perception/physiology
Abstract Animals' abilities to use internal representations of absent objects to guide adaptive behavior and acquire new information, and to represent multiple spatial, temporal, and object properties of complex events and event sequences, may underlie many aspects of human perception, memory, and symbolic thought. In this review, two classes of simple associative learning tasks that address these core cognitive capacities are discussed. The first set, including reinforcer revaluation and mediated learning procedures, address the power of Pavlovian conditioned stimuli to gain access, through learning, to representations of upcoming events. The second set of investigations concern the construction of complex stimulus representations, as illustrated in studies of contextual learning, the conjunction of explicit stimulus elements in configural learning procedures, and recent studies of episodic-like memory. The importance of identifying both cognitive process and brain system bases of performance in animal models is emphasized.
Address Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0149-7634 ISBN Medium
Area Expedition Conference
Notes PMID:15555675 Approved no
Call Number Equine Behaviour @ team @ Serial 2803
Permanent link to this record
 

 
Author Gomez, J.-C.
Title Species comparative studies and cognitive development Type Journal Article
Year 2005 Publication Trends in Cognitive Sciences Abbreviated Journal Trends. Cognit. Sci.
Volume 9 Issue 3 Pages 118-125
Keywords (up) Animals; Attention/physiology; Brain/*growth & development; Child, Preschool; Cognition/*physiology; Concept Formation/physiology; Dogs; Evolution; Fixation, Ocular; Gorilla gorilla; Humans; Infant; Learning/*physiology; Macaca mulatta; Mental Recall/physiology; Personal Construct Theory; Psychomotor Performance/physiology; Species Specificity
Abstract The comparative study of infant development and animal cognition brings to cognitive science the promise of insights into the nature and origins of cognitive skills. In this article, I review a recent wave of comparative studies conducted with similar methodologies and similar theoretical frameworks on how two core components of human cognition--object permanence and gaze following--develop in different species. These comparative findings call for an integration of current competing accounts of developmental change. They further suggest that evolution has produced developmental devices capable at the same time of preserving core adaptive components, and opening themselves up to further adaptive change, not only in interaction with the external environment, but also in interaction with other co-developing cognitive systems.
Address Scottish Primate Research Group, School of Psychology, University of St Andrews, St Andrews, Fife KY15 9JU, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-6613 ISBN Medium
Area Expedition Conference
Notes PMID:15737820 Approved no
Call Number Equine Behaviour @ team @ Serial 2851
Permanent link to this record
 

 
Author Gould, J.L.
Title Animal cognition Type Journal Article
Year 2004 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume 14 Issue 10 Pages R372-5
Keywords (up) Animals; Awareness; Behavior, Animal/*physiology; Cognition/*physiology; Concept Formation; Decision Making; Instinct; Intelligence/*physiology; Learning/*physiology; Species Specificity
Abstract
Address Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA. gould@princeton.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:15186759 Approved no
Call Number Equine Behaviour @ team @ Serial 4169
Permanent link to this record
 

 
Author Benard, J.; Stach, S.; Giurfa, M.
Title Categorization of visual stimuli in the honeybee Apis mellifera Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 4 Pages 257-270
Keywords (up) Animals; Bees/*physiology; Classification; Cognition/*physiology; Discrimination Learning/*physiology; Generalization, Stimulus/physiology; Pattern Recognition, Visual/*physiology; Photic Stimulation; Transfer (Psychology)/*physiology; Visual Perception/*physiology
Abstract Categorization refers to the classification of perceptual input into defined functional groups. We present and discuss evidence suggesting that stimulus categorization can also be found in an invertebrate, the honeybee Apis mellifera, thus underlining the generality across species of this cognitive process. Honeybees show positive transfer of appropriate responding from a trained to a novel set of visual stimuli. Such a transfer was demonstrated for specific isolated features such as symmetry or orientation, but also for assemblies (layouts) of features. Although transfer from training to novel stimuli can be achieved by stimulus generalization of the training stimuli, most of these transfer tests involved clearly distinguishable stimuli for which generalization would be reduced. Though in most cases specific experimental controls such as stimulus balance and discriminability are still required, it seems appropriate to characterize the performance of honeybees as reflecting categorization. Further experiments should address the issue of which categorization theory accounts better for the visual performances of honeybees.
Address Centre de Recherches sur la Cognition Animale (UMR 5169), CNRS – Universite Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 4, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16909238 Approved no
Call Number Equine Behaviour @ team @ Serial 2446
Permanent link to this record
 

 
Author Lea, S.E.G.; Goto, K.; Osthaus, B.; Ryan, C.M.E.
Title The logic of the stimulus Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 4 Pages 247-256
Keywords (up) Animals; Behavior, Animal/*physiology; Cognition/*physiology; Columbidae; Comprehension/physiology; Dogs; Humans; *Logic; Pattern Recognition, Visual/physiology; Perception/*physiology; Problem Solving/*physiology; Species Specificity
Abstract This paper examines the contribution of stimulus processing to animal logics. In the classic functionalist S-O-R view of learning (and cognition), stimuli provide the raw material to which the organism applies its cognitive processes-its logic, which may be taxon-specific. Stimuli may contribute to the logic of the organism's response, and may do so in taxon-specific ways. Firstly, any non-trivial stimulus has an internal organization that may constrain or bias the way that the organism addresses it; since stimuli can only be defined relative to the organism's perceptual apparatus, and this apparatus is taxon-specific, such constraints or biases will often be taxon-specific. Secondly, the representation of a stimulus that the perceptual system builds, and the analysis it makes of this representation, may provide a model for the synthesis and analysis done at a more cognitive level. Such a model is plausible for evolutionary reasons: perceptual analysis was probably perfected before cognitive analysis in the evolutionary history of the vertebrates. Like stimulus-driven analysis, such perceptually modelled cognition may be taxon-specific because of the taxon-specificity of the perceptual apparatus. However, it may also be the case that different taxa are able to free themselves from the stimulus logic, and therefore apply a more abstract logic, to different extents. This thesis is defended with reference to two examples of cases where animals' cognitive logic seems to be isomorphic with perceptual logic, specifically in the case of pigeons' attention to global and local information in visual stimuli, and dogs' failure to comprehend means-end relationships in string-pulling tasks.
Address School of Psychology, Washington Singer Laboratories, University of Exeter, Exeter, EX4 4QG, United Kingdom. s.e.g.lea@exeter.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16909234 Approved no
Call Number Equine Behaviour @ team @ Serial 2450
Permanent link to this record
 

 
Author Tebbich, S.; Seed, A.M.; Emery, N.J.; Clayton, N.S.
Title Non-tool-using rooks, Corvus frugilegus, solve the trap-tube problem Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 2 Pages 225-231
Keywords (up) Animals; Behavior, Animal/*physiology; Cognition/*physiology; Crows/*physiology; Female; Male; Problem Solving/*physiology
Abstract The trap-tube problem is used to assess whether an individual is able to foresee the outcome of its actions. To solve the task, an animal must use a tool to push a piece of food out of a tube, which has a trap along its length. An animal may learn to avoid the trap through a rule based on associative processes, e.g. using the distance of trap or food as a cue, or by understanding relations between cause and effect. This task has been used to test physical cognition in a number of tool-using species, but never a non-tool-user. We developed an experimental design that enabled us to test non-tool-using rooks, Corvus frugilegus. Our modification of the task removed the cognitive requirements of active tool use but still allowed us to test whether rooks can solve the trap-tube problem, and if so how. Additionally, we developed two new control tasks to determine whether rooks were able to transfer knowledge to similar, but novel problems, thus revealing more about the mechanisms involved in solving the task. We found that three out of seven rooks solved the modified trap-tube problem task, showing that the ability to solve the trap-tube problem is not restricted to tool-using animals. We found no evidence that the birds solved the task using an understanding of its causal properties, given that none of the birds passed the novel transfer tasks.
Address Department of Experimental Psychology, University of Cambridge, Cambridge, CB2 3EB, UK. st281@cam.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:17171360 Approved no
Call Number Equine Behaviour @ team @ Serial 2429
Permanent link to this record