|   | 
Details
   web
Records
Author Marino, L.
Title Convergence of complex cognitive abilities in cetaceans and primates Type Journal Article
Year 2002 Publication Brain, Behavior and Evolution Abbreviated Journal (up) Brain Behav Evol
Volume 59 Issue 1-2 Pages 21-32
Keywords Animal Communication; Animals; Brain/physiology; Cerebral Cortex/physiology; Cetacea/*physiology; Cognition/*physiology; *Evolution; Humans; Intelligence; Primates/*physiology
Abstract What examples of convergence in higher-level complex cognitive characteristics exist in the animal kingdom? In this paper I will provide evidence that convergent intelligence has occurred in two distantly related mammalian taxa. One of these is the order Cetacea (dolphins, whales and porpoises) and the other is our own order Primates, and in particular the suborder anthropoid primates (monkeys, apes, and humans). Despite a deep evolutionary divergence, adaptation to physically dissimilar environments, and very different neuroanatomical organization, some primates and cetaceans show striking convergence in social behavior, artificial 'language' comprehension, and self-recognition ability. Taken together, these findings have important implications for understanding the generality and specificity of those processes that underlie cognition in different species and the nature of the evolution of intelligence.
Address Neuroscience and Behavioral Biology Program, Emory University, Atlanta, Ga. 30322, USA. lmarino@emory.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:12097858 Approved no
Call Number Equine Behaviour @ team @ Serial 4158
Permanent link to this record
 

 
Author Macphail, E.M.
Title Cognitive function in mammals: the evolutionary perspective Type Journal Article
Year 1996 Publication Brain research. Cognitive brain research Abbreviated Journal (up) Brain Res Cogn Brain Res
Volume 3 Issue 3-4 Pages 279-290
Keywords Animals; Cognition/*physiology; Conditioning (Psychology)/*physiology; Evolution; Humans; Learning/*physiology; Task Performance and Analysis
Abstract The work of behavioural pharmacologists has concentrated on small animals, such as rodents and pigeons. The validity of extrapolation of their findings to humans depends upon the existence of parallels in both physiology and psychology between these animals and humans. This paper considers the question whether there are in fact substantial cognitive parallels between, first, different non-human groups of vertebrates and, second, non-humans and humans. Behavioural data from 'simple' tasks, such as habituation and conditioning, do not point to species differences among vertebrates. Using examples that concentrate on the performance of rodents and birds, it is argued that, similarly, data from more complex tasks (learning-set formation, transitive inference, and spatial memory serve as examples) reveal few if any cognitive differences amongst non-human vertebrates. This conclusion supports the notion that association formation may be the critical problem-solving process available to non-human animals; associative mechanisms are assumed to have evolved to detect causal links between events, and would therefore be relevant in all ecological niches. In agreement with this view, recent advances in comparative neurology show striking parallels in functional organisation of mammalian and avian telencephalon. Finally, it is argued that although the peculiarly human capacity for language marks a large cognitive contrast between humans and non-humans, there is good evidence-in particular, from work on implicit learning--that the learning mechanisms available to non--humans are present and do play an important role in human cognition.
Address Department of Psychology, University of York at Heslington, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-6410 ISBN Medium
Area Expedition Conference
Notes PMID:8806029 Approved no
Call Number refbase @ user @ Serial 603
Permanent link to this record
 

 
Author Hare, B.; Plyusnina, I.; Ignacio, N.; Schepina, O.; Stepika, A.; Wrangham, R.; Trut, L.
Title Social cognitive evolution in captive foxes is a correlated by-product of experimental domestication Type Journal Article
Year 2005 Publication Current biology : CB Abbreviated Journal (up) Curr Biol
Volume 15 Issue 3 Pages 226-230
Keywords Animals; *Animals, Domestic; Cognition/*physiology; *Cues; *Evolution; Foxes/*physiology; *Selection (Genetics); Social Behavior; Species Specificity
Abstract Dogs have an unusual ability for reading human communicative gestures (e.g., pointing) in comparison to either nonhuman primates (including chimpanzees) or wolves . Although this unusual communicative ability seems to have evolved during domestication , it is unclear whether this evolution occurred as a result of direct selection for this ability, as previously hypothesized , or as a correlated by-product of selection against fear and aggression toward humans--as is the case with a number of morphological and physiological changes associated with domestication . We show here that fox kits from an experimental population selectively bred over 45 years to approach humans fearlessly and nonaggressively (i.e., experimentally domesticated) are not only as skillful as dog puppies in using human gestures but are also more skilled than fox kits from a second, control population not bred for tame behavior (critically, neither population of foxes was ever bred or tested for their ability to use human gestures) . These results suggest that sociocognitive evolution has occurred in the experimental foxes, and possibly domestic dogs, as a correlated by-product of selection on systems mediating fear and aggression, and it is likely the observed social cognitive evolution did not require direct selection for improved social cognitive ability.
Address Department of Anthropology, Harvard University, Cambridge, MA 02138, USA. hare@eva.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:15694305 Approved no
Call Number refbase @ user @ Serial 594
Permanent link to this record
 

 
Author Gould, J.L.
Title Animal cognition Type Journal Article
Year 2004 Publication Current Biology : CB Abbreviated Journal (up) Curr Biol
Volume 14 Issue 10 Pages R372-5
Keywords Animals; Awareness; Behavior, Animal/*physiology; Cognition/*physiology; Concept Formation; Decision Making; Instinct; Intelligence/*physiology; Learning/*physiology; Species Specificity
Abstract
Address Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA. gould@princeton.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:15186759 Approved no
Call Number Equine Behaviour @ team @ Serial 4169
Permanent link to this record
 

 
Author Acuna, B.D.; Sanes, J.N.; Donoghue, J.P.
Title Cognitive mechanisms of transitive inference Type Journal Article
Year 2002 Publication Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale Abbreviated Journal (up) Exp Brain Res
Volume 146 Issue 1 Pages 1-10
Keywords Adolescent; Adult; Attention/*physiology; Cognition/*physiology; Female; Humans; Learning/physiology; Linear Models; Male; Photic Stimulation; Psychomotor Performance/physiology; Reaction Time/physiology
Abstract We examined how the brain organizes interrelated facts during learning and how the facts are subsequently manipulated in a transitive inference (TI) paradigm (e.g., if A<B and B<C, then A<C). This task determined features such as learned facts and behavioral goals, but the learned facts could be organized in any of several ways. For example, if one learns a list by operating on paired items, the pairs may be stored individually as separate facts and reaction time (RT) should decrease with learning. Alternatively, the pairs may be stored as a single, unified list, which may yield a different RT pattern. We characterized RT patterns that occurred as participants learned, by trial and error, the predetermined order of 11 shapes. The task goal was to choose the shape occurring closer to the end of the list, and feedback about correctness was provided during this phase. RT increased even as its variance decreased during learning, suggesting that the learnt knowledge became progressively unified into a single representation, requiring more time to manipulate as participants acquired relational knowledge. After learning, non-adjacent (NA) list items were presented to examine how participants reasoned in a TI task. The task goal also required choosing from each presented pair the item occurring closer to the list end, but without feedback. Participants could solve the TI problems by applying formal logic to the previously learnt pairs of adjacent items; alternatively, they could manipulate a single, unified representation of the list. Shorter RT occurred for NA pairs having more intervening items, supporting the hypothesis that humans employ unified mental representations during TI. The response pattern does not support mental logic solutions of applying inference rules sequentially, which would predict longer RT with more intervening items. We conclude that the brain organizes information in such a way that reflects the relations among the items, even if the facts were learned in an arbitrary order, and that this representation is subsequently used to make inferences.
Address Department of Neuroscience, Box 1953, Brown Medical School, Providence, RI 02912, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0014-4819 ISBN Medium
Area Expedition Conference
Notes PMID:12192572 Approved no
Call Number refbase @ user @ Serial 602
Permanent link to this record
 

 
Author Bennett, A.T.
Title Do animals have cognitive maps? Type Journal Article
Year 1996 Publication The Journal of Experimental Biology Abbreviated Journal (up) J Exp Biol
Volume 199 Issue Pt 1 Pages 219-224
Keywords Animals; Cognition/*physiology; Humans; Space Perception/*physiology; Visual Pathways
Abstract Drawing on studies of humans, rodents, birds and arthropods, I show that 'cognitive maps' have been used to describe a wide variety of spatial concepts. There are, however, two main definitions. One, sensu Tolman, O'Keefe and Nadel, is that a cognitive map is a powerful memory of landmarks which allows novel short-cutting to occur. The other, sensu Gallistel, is that a cognitive map is any representation of space held by an animal. Other definitions with quite different meanings are also summarised. I argue that no animal has been conclusively shown to have a cognitive map, sensu Tolman, O'Keefe and Nadel, because simpler explanations of the crucial novel short-cutting results are invariably possible. Owing to the repeated inability of experimenters to eliminate these simpler explanations over at least 15 years, and the confusion caused by the numerous contradictory definitions of a cognitive map, I argue that the cognitive map is no longer a useful hypothesis for elucidating the spatial behaviour of animals and that use of the term should be avoided.
Address Department of Pure Mathematics, University of Adelaide, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:8576693 Approved no
Call Number Equine Behaviour @ team @ Serial 2756
Permanent link to this record
 

 
Author Gallistel, C.R.; Cramer, A.E.
Title Computations on metric maps in mammals: getting oriented and choosing a multi-destination route Type Journal Article
Year 1996 Publication The Journal of Experimental Biology Abbreviated Journal (up) J Exp Biol
Volume 199 Issue Pt 1 Pages 211-217
Keywords Animals; Brain/physiology; Cercopithecus aethiops; Cognition/*physiology; Humans; Mammals/*physiology; Movement; Orientation/*physiology; Rats; Space Perception; Visual Pathways/*physiology
Abstract The capacity to construct a cognitive map is hypothesized to rest on two foundations: (1) dead reckoning (path integration); (2) the perception of the direction and distance of terrain features relative to the animal. A map may be constructed by combining these two sources of positional information, with the result that the positions of all terrain features are represented in the coordinate framework used for dead reckoning. When animals need to become reoriented in a mapped space, results from rats and human toddlers indicate that they focus exclusively on the shape of the perceived environment, ignoring non-geometric features such as surface colors. As a result, in a rectangular space, they are misoriented half the time even when the two ends of the space differ strikingly in their appearance. In searching for a hidden object after becoming reoriented, both kinds of subjects search on the basis of the object's mapped position in the space rather than on the basis of its relationship to a goal sign (e.g. a distinctive container or nearby marker), even though they have demonstrably noted the relationship between the goal and the goal sign. When choosing a multidestination foraging route, vervet monkeys look at least three destinations ahead, even though they are only capable of keeping a maximum of six destinations in mind at once.
Address Department of Psychology, University of California, Los Angeles 90095, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:8576692 Approved no
Call Number Equine Behaviour @ team @ Serial 2757
Permanent link to this record
 

 
Author Cerutti, D.T.; Staddon, J.E.R.
Title Immediacy versus anticipated delay in the time-left experiment: a test of the cognitive hypothesis Type Journal Article
Year 2004 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal (up) J Exp Psychol Anim Behav Process
Volume 30 Issue 1 Pages 45-57
Keywords Animals; Choice Behavior/*physiology; Cognition/*physiology; Columbidae; Male; Models, Psychological; Psychological Theory; *Reinforcement (Psychology); *Reinforcement Schedule; Time Perception/*physiology
Abstract In the time-left experiment (J. Gibbon & R. M. Church, 1981), animals are said to compare an expectation of a fixed delay to food, for one choice, with a decreasing delay expectation for the other, mentally representing both upcoming time to food and the difference between current time and upcoming time (the cognitive hypothesis). The results of 2 experiments support a simpler view: that animals choose according to the immediacies of reinforcement for each response at a time signaled by available time markers (the temporal control hypothesis). It is not necessary to assume that animals can either represent or subtract representations of times to food to explain the results of the time-left experiment.
Address Department of Psychological and Brain Sciences, Duke University, Durham, NC 27708-1050, USA. cerutti@psych.duke.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:14709114 Approved no
Call Number Equine Behaviour @ team @ Serial 2768
Permanent link to this record
 

 
Author Kelly, D.M.; Spetch, M.L.
Title Pigeons encode relative geometry Type Journal Article
Year 2001 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal (up) J Exp Psychol Anim Behav Process
Volume 27 Issue 4 Pages 417-422
Keywords Animals; Behavior, Animal/physiology; Cognition/*physiology; Columbidae; Discrimination Learning/physiology; Form Perception/*physiology; Space Perception/*physiology
Abstract Pigeons were trained to search for hidden food in a rectangular environment designed to eliminate any external cues. Following training, the authors administered unreinforced test trials in which the geometric properties of the apparatus were manipulated. During tests that preserved the relative geometry but altered the absolute geometry of the environment, the pigeons continued to choose the geometrically correct corners, indicating that they encoded the relative geometry of the enclosure. When tested in a square enclosure, which distorted both the absolute and relative geometry, the pigeons randomly chose among the 4 corners, indicating that their choices were not based on cues external to the apparatus. This study provides new insight into how metric properties of an environment are encoded by pigeons.
Address Department of Psychology, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9. kelly@bio.psy.ruhr-uni-bochum.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:11676090 Approved no
Call Number Equine Behaviour @ team @ Serial 2770
Permanent link to this record
 

 
Author Tommasi, L.; Vallortigara, G.
Title Searching for the center: spatial cognition in the domestic chick (Gallus gallus) Type Journal Article
Year 2000 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal (up) J Exp Psychol Anim Behav Process
Volume 26 Issue 4 Pages 477-486
Keywords Animals; Behavior, Animal/physiology; Chickens; Cognition/*physiology; Learning/physiology; Male; Space Perception/*physiology; Spatial Behavior/*physiology
Abstract Chicks learned to find food hidden under sawdust by ground-scratching in the central position of the floor of a closed arena. When tested inan arena of identical shape but a larger area, chicks searched at 2 different locations, one corresponding to the correct distance (i.e., center) in the smaller (training) arena and the other to the actual center of the test arena. When tested in an arena of the same shape but a smaller area, chicks searched in the center of it. These results suggest that chicks are able to encode information on the absolute and relative distance of the food from the walls of the arena. After training in the presence of a landmark located at the center of the arena, animals searched at the center even after the removal of the landmark. Marked changes in the height of the walls of the arena produced some displacement in searching behavior, suggesting that chicks used the angular size of the walls to estimate distances.
Address Department of General Psychology, University of Padua, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:11056887 Approved no
Call Number Equine Behaviour @ team @ Serial 2774
Permanent link to this record