|   | 
Details
   web
Records
Author Bennett, A.T.
Title Do animals have cognitive maps? Type Journal Article
Year (up) 1996 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 199 Issue Pt 1 Pages 219-224
Keywords Animals; Cognition/*physiology; Humans; Space Perception/*physiology; Visual Pathways
Abstract Drawing on studies of humans, rodents, birds and arthropods, I show that 'cognitive maps' have been used to describe a wide variety of spatial concepts. There are, however, two main definitions. One, sensu Tolman, O'Keefe and Nadel, is that a cognitive map is a powerful memory of landmarks which allows novel short-cutting to occur. The other, sensu Gallistel, is that a cognitive map is any representation of space held by an animal. Other definitions with quite different meanings are also summarised. I argue that no animal has been conclusively shown to have a cognitive map, sensu Tolman, O'Keefe and Nadel, because simpler explanations of the crucial novel short-cutting results are invariably possible. Owing to the repeated inability of experimenters to eliminate these simpler explanations over at least 15 years, and the confusion caused by the numerous contradictory definitions of a cognitive map, I argue that the cognitive map is no longer a useful hypothesis for elucidating the spatial behaviour of animals and that use of the term should be avoided.
Address Department of Pure Mathematics, University of Adelaide, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:8576693 Approved no
Call Number Equine Behaviour @ team @ Serial 2756
Permanent link to this record
 

 
Author Gallistel, C.R.; Cramer, A.E.
Title Computations on metric maps in mammals: getting oriented and choosing a multi-destination route Type Journal Article
Year (up) 1996 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 199 Issue Pt 1 Pages 211-217
Keywords Animals; Brain/physiology; Cercopithecus aethiops; Cognition/*physiology; Humans; Mammals/*physiology; Movement; Orientation/*physiology; Rats; Space Perception; Visual Pathways/*physiology
Abstract The capacity to construct a cognitive map is hypothesized to rest on two foundations: (1) dead reckoning (path integration); (2) the perception of the direction and distance of terrain features relative to the animal. A map may be constructed by combining these two sources of positional information, with the result that the positions of all terrain features are represented in the coordinate framework used for dead reckoning. When animals need to become reoriented in a mapped space, results from rats and human toddlers indicate that they focus exclusively on the shape of the perceived environment, ignoring non-geometric features such as surface colors. As a result, in a rectangular space, they are misoriented half the time even when the two ends of the space differ strikingly in their appearance. In searching for a hidden object after becoming reoriented, both kinds of subjects search on the basis of the object's mapped position in the space rather than on the basis of its relationship to a goal sign (e.g. a distinctive container or nearby marker), even though they have demonstrably noted the relationship between the goal and the goal sign. When choosing a multidestination foraging route, vervet monkeys look at least three destinations ahead, even though they are only capable of keeping a maximum of six destinations in mind at once.
Address Department of Psychology, University of California, Los Angeles 90095, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:8576692 Approved no
Call Number Equine Behaviour @ team @ Serial 2757
Permanent link to this record
 

 
Author Etienne, A.S.; Maurer, R.; Seguinot, V.
Title Path integration in mammals and its interaction with visual landmarks Type Journal Article
Year (up) 1996 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 199 Issue Pt 1 Pages 201-209
Keywords Animals; Cognition/physiology; Cricetinae; Gerbillinae; Humans; Locomotion/*physiology; Mammals/*physiology; Mesocricetus; Mice; Proprioception/physiology; Rats; Visual Pathways/*physiology; Visual Perception/*physiology
Abstract During locomotion, mammals update their position with respect to a fixed point of reference, such as their point of departure, by processing inertial cues, proprioceptive feedback and stored motor commands generated during locomotion. This so-called path integration system (dead reckoning) allows the animal to return to its home, or to a familiar feeding place, even when external cues are absent or novel. However, without the use of external cues, the path integration process leads to rapid accumulation of errors involving both the direction and distance of the goal. Therefore, even nocturnal species such as hamsters and mice rely more on previously learned visual references than on the path integration system when the two types of information are in conflict. Recent studies investigate the extent to which path integration and familiar visual cues cooperate to optimize the navigational performance.
Address Laboratoire d'Ethologie, FPSE, Universite de Geneve, Carouge, Switzerland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:8576691 Approved no
Call Number Equine Behaviour @ team @ Serial 2758
Permanent link to this record
 

 
Author Wasserman, E.A.; Gagliardi, J.L.; Cook, B.R.; Kirkpatrick-Steger, K.; Astley, S.L.; Biederman, I.
Title The pigeon's recognition of drawings of depth-rotated stimuli Type Journal Article
Year (up) 1996 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 22 Issue 2 Pages 205-221
Keywords Animals; Cognition/*physiology; Columbidae; Discrimination (Psychology); Form Perception/*physiology; Learning/*physiology; Photic Stimulation; Rotation
Abstract Four experiments used a four-choice discrimination learning paradigm to explore the pigeon's recognition of line drawings of four objects (an airplane, a chair, a desk lamp, and a flashlight) that were rotated in depth. The pigeons reliably generalized discriminative responding to pictorial stimuli over all untrained depth rotations, despite the bird's having been trained at only a single depth orientation. These generalization gradients closely resembled those found in prior research that used other stimulus dimensions. Increasing the number of different vantage points in the training set from one to three broadened the range of generalized testing performance, with wider spacing of the training orientations more effectively broadening generalized responding. Template and geon theories of visual recognition are applied to these empirical results.
Address Department of Psychology, University of Iowa, Iowa City 52242-1407, USA. ed-wasserman@uiowa.educ
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:8618103 Approved no
Call Number Equine Behaviour @ team @ Serial 2780
Permanent link to this record
 

 
Author Boysen, S.T.; Bernston, G.G.; Hannan, M.B.; Cacioppo, J.T.
Title Quantity-based interference and symbolic representations in chimpanzees (Pan troglodytes) Type Journal Article
Year (up) 1996 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 22 Issue 1 Pages 76-86
Keywords Animals; Behavior, Animal; Cognition; *Discrimination Learning; Female; Male; *Pan troglodytes; *Reinforcement (Psychology); Task Performance and Analysis
Abstract Five chimpanzees with training in counting and numerical skills selected between 2 arrays of different amounts of candy or 2 Arabic numerals. A reversed reinforcement contingency was in effect, in which the selected array was removed and the subject received the nonselected candies (or the number of candies represented by the nonselected Arabic numeral). Animals were unable to maximize reward by selecting the smaller array when candies were used as array elements. When Arabic numerals were substituted for the candy arrays, all animals showed an immediate shift to a more optimal response strategy of selecting the smaller numeral, thereby receiving the larger reward. Results suggest that a response disposition to the high-incentive candy stimuli introduced a powerful interference effect on performance, which was effectively overridden by the use of symbolic representations.
Address Ohio State University, Department of Psychology, Ohio State University, Columbus 43210-1222, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:8568498 Approved no
Call Number Equine Behaviour @ team @ Serial 2781
Permanent link to this record
 

 
Author Fetterman, J.G.
Title Dimensions of stimulus complexity Type Journal Article
Year (up) 1996 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 22 Issue 1 Pages 3-18
Keywords Animals; *Behavior, Animal; Cognition; *Learning; Memory; Time Factors
Abstract Animal learning research has increasingly used complex stimuli that approximate natural objects, events, and locations, a trend that has accompanied a resurgence of interest in the role of cognitive factors in learning. Accounts of complex stimulus control have focused mainly on cognitive mechanisms and largely ignored the contribution of stimulus information to perception and memory for complex events. It is argued here that research on animal learning stands to benefit from a more detailed consideration of the stimulus and that James Gibson's stimulus-centered theory of perception serves as a useful framework for analyses of complex stimuli. Several issues in the field of animal learning and cognition are considered from the Gibsonian perspective on stimuli, including the fundamental problem of defining the effective stimulus.
Address Department of Psychology, Indiana University-Purdue University, Indianapolis 46202, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:8568494 Approved no
Call Number Equine Behaviour @ team @ Serial 2782
Permanent link to this record
 

 
Author Sappington, B.K.F.; McCall, C.A.; Coleman, D.A.; Kuhlers, D.L.; Lishak, R.S.
Title A preliminary study of the relationship between discrimination reversal learning and performance tasks in yearling and 2-year-old horses Type Journal Article
Year (up) 1997 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.
Volume 53 Issue 3 Pages 157-166
Keywords Cognition; Learning; Horse; Training
Abstract A study was conducted to determine the relationship between discrimination reversal learning and performance tasks in horses. Ten yearling and seven 2-year-old mares and geldings of Arabian (n = 4), Quarter Horse (n = 9), and Thoroughbred (n = 4) breeding were given a two-choice discrimination task in which either a black or a white bucket contained a food reward for ten trials per day during 19 test days. The spatial position of the buckets was varied on a random schedule. The rewarded bucket color was reversed each time a subject met criterion of eight correct choices per day for 2 consecutive days. Discrimination reversal testing was followed by 6 days of performance tasks: three crossing a wooden bridge and three jumping an obstacle to reach food and conspecifics, within a maximum allotted time of 15 min day-1. Total reversals attained by the horses were low (x = 1.5 +/- 0.9). All subjects did attain at least one reversal, and six had two or more reversals. No differences (P > .05) were detected between ages or sexes, nor among breeds in discrimination reversal learning or performance test measurements. However, there was a trend towards a breed difference (P <= 0.09) in the mean number of correct responses to the first reversal criterion. Correlations between reversal learning results and performance task results were extremely low, indicating that the discrimination reversal learning test was not useful for predicting success at these performance tasks. Results from the two performance tasks also showed little correlation (r = 0.04, P < 0.91), indicating that horses might not use the same approach when solving the problem of crossing these two obstacles. The overall poor performance of the horses on the discrimination reversal task suggests horses may have difficulty reversing previously learned tasks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 826
Permanent link to this record
 

 
Author Joffe, T.H.; Dunbar, R.I.
Title Visual and socio-cognitive information processing in primate brain evolution Type Journal Article
Year (up) 1997 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 264 Issue 1386 Pages 1303-1307
Keywords Animals; Brain/anatomy & histology/*physiology; Cognition/physiology; *Evolution; Geniculate Bodies/anatomy & histology/physiology; Humans; Mental Processes/physiology; Neocortex/physiology; Primates/anatomy & histology/*physiology/*psychology; *Social Behavior; Visual Cortex/anatomy & histology/physiology
Abstract Social group size has been shown to correlate with neocortex size in primates. Here we use comparative analyses to show that social group size is independently correlated with the size of non-V1 neocortical areas, but not with other more proximate components of the visual system or with brain systems associated with emotional cueing (e.g. the amygdala). We argue that visual brain components serve as a social information 'input device' for socio-visual stimuli such as facial expressions, bodily gestures and visual status markers, while the non-visual neocortex serves as a 'processing device' whereby these social cues are encoded, interpreted and associated with stored information. However, the second appears to have greater overall importance because the size of the V1 visual area appears to reach an asymptotic size beyond which visual acuity and pattern recognition may not improve significantly. This is especially true of the great ape clade (including humans), that is known to use more sophisticated social cognitive strategies.
Address School of Life Sciences, University of Liverpool, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:9332015 Approved no
Call Number Serial 2095
Permanent link to this record
 

 
Author Brodbeck, D.R.
Title Picture fragment completion: priming in the pigeon Type Journal Article
Year (up) 1997 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 23 Issue 4 Pages 461-468
Keywords Animals; *Attention; *Awareness; Columbidae; *Mental Recall; *Pattern Recognition, Visual; *Perceptual Masking; Problem Solving
Abstract It has been suggested that the system behind implicit memory in humans is evolutionarily old and that animals should readily show priming. In Experiment 1, a picture fragment completion test was used to test priming in pigeons. After pecking a warning stimulus, pigeons were shown 2 partially obscured pictures from different categories and were always reinforced for choosing a picture from one of the categories. On control trials, the warning stimulus was a picture of some object (not from the S+ or S- category), on study trials the warning stimulus was a picture to be categorized on the next trial, and on test trials the warning stimulus was a randomly chosen picture and the S+ picture was the warning stimulus seen on the previous trial. Categorization was better on study and test trials than on control trials. Experiment 2 ruled out the possibility that the priming effect was caused by the pigeons' responding to familiarity by using warning stimuli from both S+ and S- categories. Experiment 3 investigated the time course of the priming effect.
Address Department of Psychology, University of Western Ontario, London, Ontario, Canada. brodbeck@thunderbird.auc.laurentian.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:9411019 Approved no
Call Number Equine Behaviour @ team @ Serial 2777
Permanent link to this record
 

 
Author Church, R.M.
Title Quantitative models of animal learning and cognition Type Journal Article
Year (up) 1997 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 23 Issue 4 Pages 379-389
Keywords Animals; *Behavior, Animal; *Cognition; Computer Simulation; *Learning; *Models, Psychological; *Models, Theoretical
Abstract This article reviews the prerequisites for quantitative models of animal learning and cognition, describes the types of models, provides a rationale for the development of such quantitative models, describes criteria for their evaluation, and makes recommendations for the next generation of quantitative models. A modular approach to the development of models is described in which a procedure is considered as a generator of stimuli and a model is considered as a generator of responses. The goal is to develop models that, in combination with many different procedures, produce sequences of times of occurrence of events (stimuli and responses) that are indistinguishable from those produced by the animal under many experimental procedures and data analysis techniques.
Address Department of Psychology, Brown University, Providence, Rhode Island 02912, USA. russell_church@brown.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:9335132 Approved no
Call Number Equine Behaviour @ team @ Serial 2778
Permanent link to this record