|   | 
Details
   web
Records
Author Paz-y-Miño C. G.; Bond, A.B.; Kamil, A.C.; Balda, R.P.
Title Pinyon jays use transitive inference to predict social dominance Type Journal Article
Year 2004 Publication Nature Abbreviated Journal Nature
Volume 430 Issue 7001 Pages 778-781
Keywords (up) Animals; Cognition/*physiology; Group Structure; Male; *Social Dominance; Songbirds/*physiology
Abstract Living in large, stable social groups is often considered to favour the evolution of enhanced cognitive abilities, such as recognizing group members, tracking their social status and inferring relationships among them. An individual's place in the social order can be learned through direct interactions with others, but conflicts can be time-consuming and even injurious. Because the number of possible pairwise interactions increases rapidly with group size, members of large social groups will benefit if they can make judgments about relationships on the basis of indirect evidence. Transitive reasoning should therefore be particularly important for social individuals, allowing assessment of relationships from observations of interactions among others. Although a variety of studies have suggested that transitive inference may be used in social settings, the phenomenon has not been demonstrated under controlled conditions in animals. Here we show that highly social pinyon jays (Gymnorhinus cyanocephalus) draw sophisticated inferences about their own dominance status relative to that of strangers that they have observed interacting with known individuals. These results directly demonstrate that animals use transitive inference in social settings and imply that such cognitive capabilities are widespread among social species.
Address Center for Avian Cognition, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:15306809 Approved no
Call Number refbase @ user @; Equine Behaviour @ team @ room B 3.029 Serial 352
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title Cognitive science: rank inferred by reason Type Journal Article
Year 2004 Publication Nature Abbreviated Journal Nature
Volume 430 Issue 7001 Pages 732-733
Keywords (up) Animals; Cognition/*physiology; Group Structure; Male; *Social Dominance; Songbirds/*physiology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:15306792 Approved no
Call Number refbase @ user @ Serial 365
Permanent link to this record
 

 
Author Katz, M.; Lachlan, R.F.
Title Social learning of food types in zebra finches (Taenopygia guttata) is directed by demonstrator sex and feeding activity Type Journal Article
Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 6 Issue 1 Pages 11-16
Keywords (up) Animals; Color; Diet; *Feeding Behavior; Female; *Learning; Male; Sex Factors; *Social Behavior; *Songbirds
Abstract In this study we examined how social learning of feeding preferences by zebra finches was affected by the identity of different demonstrators. We presented adult zebra finches with two demonstrators, one male and one female, that exhibited different food choices, and we recorded their subsequent preference when given a choice between the two food types. Previously it was found that young zebra finches' patterns of social learning are affected by the sex of the individual demonstrating a feeding behaviour. This result could be explained by the lack of exposure these animals had to the opposite sex, or by their mating status. Therefore, we investigated the social learning preferences of adult mated zebra finches. We found the same pattern of directed social learning of a different type of feeding behaviour (food colour): female zebra finches preferred the colour of food eaten by male demonstrators, whereas male zebra finches showed little evidence of any preference for the colour of food eaten by female demonstrators. Furthermore, we found that female observers' preferences were biased by demonstrators' relative feeding activity: the female demonstrator was only ever preferred if it ate less than its male counterpart.
Address Institute of Evolutionary and Ecological Science, University of Leiden, Kaiserstraat 63, 2311GP, Leiden, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:12658531 Approved no
Call Number Equine Behaviour @ team @ Serial 2585
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title Animal behaviour: planning for breakfast Type Journal Article
Year 2007 Publication Nature Abbreviated Journal Nature
Volume 445 Issue 7130 Pages 825-826
Keywords (up) Animals; Feeding Behavior/*physiology; *Food; Haplorhini/physiology; Memory/physiology; Songbirds/*physiology; Thinking/*physiology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:17314961 Approved no
Call Number refbase @ user @ Serial 356
Permanent link to this record
 

 
Author Mettke-Hofmann, C.; Gwinner, E.
Title Long-term memory for a life on the move Type Journal Article
Year 2003 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 100 Issue 10 Pages 5863-5866
Keywords (up) Animals; Germany; Israel; Memory/*physiology; Models, Biological; Periodicity; Songbirds/*physiology
Abstract Evidence is accumulating that cognitive abilities are shaped by the specific ecological conditions to which animals are exposed. Long-distance migratory birds may provide a striking example of this. Field observations have shown that, at least in some species, a substantial proportion of individuals return to the same breeding, wintering, and stopover sites in successive years. This observation suggests that migrants have evolved special cognitive abilities that enable them to accomplish these feats. Here we show that memory of a particular feeding site persisted for at least 12 months in a long-distance migrant, whereas a closely related nonmigrant could remember such a site for only 2 weeks. Thus, it seems that the migratory lifestyle has influenced the learning and memorizing capacities of migratory birds. These results build a bridge between field observations suggesting special memorization feats of migratory birds and previous neuroanatomical results from the same two species indicating an increase in relative hippocampal size from the first to the second year of life in the migrant but not in the nonmigrant.
Address Max Planck Research Centre for Ornithology, Department of Biological Rhythms and Behaviour, Von-der-Tann-Strasse 7, 82346 Andechs, Germany. mettke-hofmann@erl.ornithol.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:12719527 Approved no
Call Number refbase @ user @ Serial 511
Permanent link to this record
 

 
Author Peake, T.M.; Terry, A.M.; McGregor, P.K.; Dabelsteen, T.
Title Male great tits eavesdrop on simulated male-to-male vocal interactions Type Journal Article
Year 2001 Publication Proceedings. Biological sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 268 Issue 1472 Pages 1183-1187
Keywords (up) Animals; Male; Songbirds/*physiology; *Vocalization, Animal
Abstract Animal communication generally occurs in the environment of a network of several potential signallers and receivers. Within a network environment, it is possible to gain relative information about conspecifics by eavesdropping on signalling interactions. We presented male great tits with the opportunity to gain such information by simulating singing interactions using two loudspeakers. Interactions were presented so that relevant information was not available in the absolute singing behaviour of either individual, only in the relative timing of their songs in the interaction as a whole. We then assayed the information extracted by focal males by subsequently introducing one of the 'interactants' (i.e. loudspeakers) into the territory of the focal male. Focal males responded with a reduced song output to males that had just 'lost' an interaction. Focal males did not respond significantly differently to 'winners' as compared with intruders recently involved in an interaction that contained no consistent information. Focal males also responded by switching song types more often when encountering males that had recently been involved in a low-intensity interaction. These results provide the clearest evidence yet that male songbirds extract information from signal interactions between conspecifics in the field.
Address Department of Animal Behaviour, Zoological Institute, Tagensvej 16, University of Copenhagen, 2200 Copenhagen N, Denmark. tmpeake@zi.ku.dk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:11375107 Approved no
Call Number refbase @ user @ Serial 712
Permanent link to this record
 

 
Author Macphail, E.M.; Boldhuis, J.J
Title The evolution of intelligence: adaptive specializations versusgeneral process Type Journal Article
Year 2001 Publication Biological Reviews Abbreviated Journal
Volume 76 Issue 3 Pages 341-364
Keywords (up) biological constraints, corvids, ecology, food-storing birds, hippocampal size, parids, spatial learning, spatial memory, spatial module.
Abstract Darwin argued that between-species differences in intelligence were differences of degree, not of kind. The contemporary ecological approach to animal cognition argues that animals have evolved species-specific and problem-specific processes to solve problems associated with their particular ecological niches: thus different species use different processes, and within a species, different processes are used to tackle problems involving different inputs. This approach contrasts both with Darwin's view and with the general process view, according to which the same central processes of learning and memory are used across an extensive range of problems involving very different inputs. We review evidence relevant to the claim that the learning and memory performance of non-human animals varies according to the nature of the stimuli involved. We first discuss the resource distribution hypothesis, olfactory learning-set formation, and the 'biological constraints' literature, but find no convincing support from these topics for the ecological account of cognition. We then discuss the claim that the performance of birds in spatial tasks of learning and memory is superior in species that depend heavily upon stored food compared to species that either show less dependence upon stored food or do not store food. If it could be shown that storing species enjoy a superiority specifically in spatial (and not non-spatial) tasks, this would argue that spatial tasks are indeed solved using different processes from those used in non-spatial tasks. Our review of this literature does not find a consistent superiority of storing over non-storing birds in spatial tasks, and, in particular, no evidence of enhanced superiority of storing species when the task demands are increased, by, for example, increasing the number of items to be recalled or the duration of the retention period. We discuss also the observation that the hippocampus of storing birds is larger than that of non-storing birds, and find evidence contrary to the view that hippocampal enlargement is associated with enhanced spatial memory; we are, however, unable to suggest a convincing alternative explanation for hippocampal enlargement. The failure to find solid support for the ecological view supports the view that there are no qualitative differences in cognition between animal species in the processes of learning and memory. We also argue that our review supports our contention that speculation about the phylogenetic development and function of behavioural processes does not provide a solid basis for gaining insight into the nature of those processes. We end by confessing to a belief in one major qualitative difference in cognition in animals: we believe that humans alone are capable of acquiring language, and that it is this capacity that divides our intelligence so sharply from non-human intelligence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4797
Permanent link to this record
 

 
Author Bouchard, J.
Title Is social learning correlated with innovation in birds? An inter-and an interspecific test Type Manuscript
Year 2002 Publication Department of Biology McGill University Montréal, Québec Abbreviated Journal
Volume Issue Pages
Keywords (up) Birds -- Behavior Birds -- Food Columba livia -- Behavior Columba livia -- Food Social learning
Abstract This thesis focuses on the relationship between innovation and social learning in the foraging context, across and within bird species, using two different sources of data: anecdotal reports from the literature, and experimental tests in the laboratory and the field. In chapter 1, I review the trends in innovation and social learning in the avian literature, and contrast them with trends in mammals, especially primates. In chapter 2, I use anecdotal reports of feeding innovation and social learning in the literature to assess taxonomic trends and to study the relationship between the two traits at the interspecific level. In chapter 3, I investigate the relationship between innovation and social learning at the intraspecific level in captive feral pigeons (Columba livia). Innovation is estimated from the ability to solve an innovative foraging problem, and social learning is measured as the number of trials required to learn a foraging task from a proficient demonstrator. (Abstract shortened by UMI.)
Address
Corporate Author Thesis Master's thesis
Publisher Department of Biology McGili University Montréal, Québec Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4785
Permanent link to this record
 

 
Author Nakagawa, S.; Waas, J.R.
Title 'O sibling, where art thou?' – A review of avian sibling recognition with respect to the mammalian literature Type Journal Article
Year 2004 Publication Biological Reviews of the Cambridge Philosophical Society Abbreviated Journal
Volume 79 Issue 1 Pages 101-119
Keywords (up) Birds; Direct familiarisation; Indirect familiarisation; Individual recognition; Kin discrimination; Kin recognition; Mammals; Sibling recognition
Abstract Avian literature on sibling recognition is rare compared to that developed by mammalian researchers. We compare avian and mammalian research on sibling recognition to identify why avian work is rare, how approaches differ and what avian and mammalian researchers can learn from each other. Three factors: (1) biological differences between birds and mammals, (2) conceptual biases and (3) practical constraints, appear to influence our current understanding. Avian research focuses on colonial species because sibling recognition is considered adaptive where 'mixing potential' of dependent young is high; research on a wider range of species, breeding systems and ecological conditions is now needed. Studies of acoustic recognition cues dominate avian literature; other types of cues (e.g. visual, olfactory) deserve further attention. The effect of gender on avian sibling recognition has yet to be investigated; mammalian work shows that gender can have important influences. Most importantly, many researchers assume that birds recognise siblings through 'direct familiarisation' (commonly known as associative learning or familiarity); future experiments should also incorporate tests for 'indirect familiarisation' (commonly known as phenotype matching). If direct familiarisation proves crucial, avian research should investigate how periods of separation influence sibling discrimination. Mammalian researchers typically interpret sibling recognition in broad functional terms (nepotism, optimal outbreeding); some avian researchers more successfully identify specific and testable adaptive explanations, with greater relevance to natural contexts. We end by reporting exciting discoveries from recent studies of avian sibling recognition that inspire further interest in this topic.
Address Department of Biological Sciences, University Waikato, Private Bag 3105, Hamilton, New Zealand
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Cited By (since 1996): 9; Export Date: 23 October 2008; Source: Scopus Approved no
Call Number Equine Behaviour @ team @ Serial 4567
Permanent link to this record
 

 
Author Lefebvre, L.; Reader, S.M.; Sol, D.
Title Brains, Innovations and Evolution in Birds and Primates Type Journal Article
Year 2004 Publication Brain, Behavior and Evolution Abbreviated Journal Brain. Behav. Evol.
Volume 63 Issue 4 Pages 233-246
Keywords (up) Innovation W Brain evolution W Hyperstriatum ventrale W Neostriatum W Isocortex W Birds W Primates W Tool use W Invasion biology
Abstract Abstract

Several comparative research programs have focusedon the cognitive, life history and ecological traits thataccount for variation in brain size. We review one ofthese programs, a program that uses the reported frequencyof behavioral innovation as an operational measureof cognition. In both birds and primates, innovationrate is positively correlated with the relative size of associationareas in the brain, the hyperstriatum ventrale andneostriatum in birds and the isocortex and striatum inprimates. Innovation rate is also positively correlatedwith the taxonomic distribution of tool use, as well asinterspecific differences in learning. Some features ofcognition have thus evolved in a remarkably similar wayin primates and at least six phyletically-independent avianlineages. In birds, innovation rate is associated withthe ability of species to deal with seasonal changes in theenvironment and to establish themselves in new regions,and it also appears to be related to the rate atwhich lineages diversify. Innovation rate provides a usefultool to quantify inter-taxon differences in cognitionand to test classic hypotheses regarding the evolution ofthe brain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4738
Permanent link to this record