toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Overli, O.; Sorensen, C.; Pulman, K.G.T.; Pottinger, T.G.; Korzan, W.; Summers, C.H.; Nilsson, G.E. doi  openurl
  Title Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates Type Journal Article
  Year 2007 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev  
  Volume 31 Issue 3 Pages 396-412  
  Keywords Adaptation, Psychological/*physiology; Animals; Behavior, Animal/*physiology; Biogenic Monoamines/physiology; Brain/physiology; Cognition/*physiology; Evolution; Glucocorticoids/*physiology; Individuality; Lizards; Oncorhynchus mykiss; Social Dominance; Stress, Psychological/*psychology  
  Abstract Reactions to stress vary between individuals, and physiological and behavioral responses tend to be associated in distinct suites of correlated traits, often termed stress-coping styles. In mammals, individuals exhibiting divergent stress-coping styles also appear to exhibit intrinsic differences in cognitive processing. A connection between physiology, behavior, and cognition was also recently demonstrated in strains of rainbow trout (Oncorhynchus mykiss) selected for consistently high or low cortisol responses to stress. The low-responsive (LR) strain display longer retention of a conditioned response, and tend to show proactive behaviors such as enhanced aggression, social dominance, and rapid resumption of feed intake after stress. Differences in brain monoamine neurochemistry have also been reported in these lines. In comparative studies, experiments with the lizard Anolis carolinensis reveal connections between monoaminergic activity in limbic structures, proactive behavior in novel environments, and the establishment of social status via agonistic behavior. Together these observations suggest that within-species diversity of physiological, behavioral and cognitive correlates of stress responsiveness is maintained by natural selection throughout the vertebrate sub-phylum.  
  Address Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 As, Norway. oyvind.overli@umb.no  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0149-7634 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17182101 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2801  
Permanent link to this record
 

 
Author Sarter, M. doi  openurl
  Title Animal cognition: defining the issues Type Journal Article
  Year 2004 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev  
  Volume 28 Issue 7 Pages 645-650  
  Keywords Animals; Behavior, Animal/*physiology; Cognition/*physiology; Humans; *Models, Animal; Psychopharmacology/methods; Reproducibility of Results  
  Abstract The assessment of cognitive functions in rodents represents a critical experimental variable in many research fields, ranging from the basic cognitive neurosciences to psychopharmacology and neurotoxicology. The increasing use of animal behavioral tests as 'assays' for the assessment of effects on learning and memory has resulted in a considerable heterogeneity of data, particularly in the field of behavioral and psycho pharmacology. The limited predictive validity of changes in behavioral performance observed in standard animal tests of learning and memory indicates that a renewed effort to scrutinize the validity of these tests is warranted. In humans, levels of processing (effortful vs. automatic) and categories of information (procedural vs. episodic/declarative) are important variables of cognitive operations. The design of tasks that assess the recall of 'episodic' or 'declarative' information appears to represent a particular challenge for research using laboratory rodents. For example, the hypothesis that changes in inspection time for a previously encountered place or object are based on the recall of declarative/episodic information requires substantiation. In order to generalize findings on the effects of neuronal or pharmacological manipulations on learning and memory, obtained from one species and one task, to other species and other tasks, the mediating role of important sets of variables which influence learning and memory (e.g. attentional, affective) needs to be determined. Similar to the view that a neuronal manipulation (e.g. a lesion) represents a theory of the condition modeled (e.g. a degenerative disorder), an animal behavioral task represents a theory of the behavioral/cognitive process of interest. Therefore, the test of hypotheses regarding the validity of procedures used to assess cognitive functions in animals is an inherent part of the research process.  
  Address Department of Psychology, University of Michigan, 4032 East Hall, 525 E. University Avenue, Ann Arbor, MI 48109-1109, USA. msarter@umich.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0149-7634 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15555674 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2804  
Permanent link to this record
 

 
Author Branchi, I.; Bichler, Z.; Berger-Sweeney, J.; Ricceri, L. openurl 
  Title Animal models of mental retardation: from gene to cognitive function Type Journal Article
  Year 2003 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev  
  Volume 27 Issue 1-2 Pages 141-153  
  Keywords Animals; Animals, Genetically Modified/growth & development; Behavior/physiology; Behavior, Animal; Brain/*growth & development; Cognition/*physiology; *Disease Models, Animal; Environment; Genes; Genetic Diseases, Inborn/physiopathology; Humans; Mental Retardation/classification/*genetics/*physiopathology  
  Abstract About 2-3% of all children are affected by mental retardation, and genetic conditions rank among the leading causes of mental retardation. Alterations in the information encoded by genes that regulate critical steps of brain development can disrupt the normal course of development, and have profound consequences on mental processes. Genetically modified mouse models have helped to elucidate the contribution of specific gene alterations and gene-environment interactions to the phenotype of several forms of mental retardation. Mouse models of several neurodevelopmental pathologies, such as Down and Rett syndromes and X-linked forms of mental retardation, have been developed. Because behavior is the ultimate output of brain, behavioral phenotyping of these models provides functional information that may not be detectable using molecular, cellular or histological evaluations. In particular, the study of ontogeny of behavior is recommended in mouse models of disorders having a developmental onset. Identifying the role of specific genes in neuropathologies provides a framework in which to understand key stages of human brain development, and provides a target for potential therapeutic intervention.  
  Address Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Roma, Italy. branchi@iss.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0149-7634 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12732230 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2805  
Permanent link to this record
 

 
Author Blokland, A. openurl 
  Title Reaction time responding in rats Type Journal Article
  Year 1998 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev  
  Volume 22 Issue 6 Pages 847-864  
  Keywords Amphetamine/pharmacology; Animals; Behavior, Animal/drug effects/*physiology; Conditioning, Operant/drug effects/*physiology; Dopamine Uptake Inhibitors/pharmacology; Dose-Response Relationship, Drug; Male; Rats; Rats, Inbred Lew; Reaction Time/drug effects/*physiology  
  Abstract The use of reaction time has a great tradition in the field of human information processing research. In animal research the use of reaction time test paradigms is mainly limited to two research fields: the role of the striatum in movement initiation; and aging. It was discussed that reaction time responding can be regarded as “single behavior”, this term was used to indicate that only one behavioral category is measured, allowing a better analysis of brain-behavior relationships. Reaction time studies investigating the role of the striatum in motor functions revealed that the initiation of a behavioral response is dependent on the interaction of different neurotransmitters (viz. dopamine, glutamate, GABA). Studies in which lesions were made in different brain structures suggested that motor initiation is dependent on defined brain structures (e.g. medialldorsal striatum, prefrontal cortex). It was concluded that the use of reaction time measures can indeed be a powerful tool in studying brain-behavior relationships. However, there are some methodological constraints with respect to the assessment of reaction time in rats, as was tried to exemplify by the experiments described in the present paper. On the one hand one should try to control for behavioral characteristics of rats that may affect the validity of the parameter reaction time. On the other hand, the mean value of reaction time should be in the range of what has been reported in man. Although these criteria were not always met in several studies, it was concluded that reaction time can be validly assessed in rats. Finally, it was discussed that the use of reaction time may go beyond studies that investigate the role of the basal ganglia in motor output. Since response latency is a direct measure of information processing this parameter may provide insight into basic elements of cognition. Based on the significance of reaction times in human studies the use of this dependent variable in rats may provide a fruitful approach in studying brain-behavior relationships in cognitive functions.  
  Address Department of Psychology, University of Maastricht, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0149-7634 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9809315 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2807  
Permanent link to this record
 

 
Author Gallup, G.G.J. openurl 
  Title Do minds exist in species other than our own? Type Journal Article
  Year 1985 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev  
  Volume 9 Issue 4 Pages 631-641  
  Keywords Animals; Awareness; *Behavior, Animal; Child Psychology; Child, Preschool; *Cognition; Consciousness; Evolution; Humans; Infant; Language; Pan troglodytes; Philosophy; Psychological Theory; Species Specificity  
  Abstract An answer to the question of animal awareness depends on evidence, not intuition, anecdote, or debate. This paper examines some of the problems inherent in an analysis of animal awareness, and whether animals might be aware of being aware is offered as a more meaningful distinction. A framework is presented which can be used to make a determination about the extent to which other species have experiences similar to ours based on their ability to make inferences and attributions about mental states in others. The evidence from both humans and animals is consistent with the idea that the capacity to use experience to infer the experience of others is a byproduct of self-awareness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0149-7634 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:4080281 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2808  
Permanent link to this record
 

 
Author Epstein, R. openurl 
  Title Animal cognition as the praxist views it Type Journal Article
  Year 1985 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev  
  Volume 9 Issue 4 Pages 623-630  
  Keywords Animals; *Behavior, Animal; Behavioral Sciences/*trends; Behaviorism; *Cognition; Columbidae; History, 18th Century; History, 19th Century; Humans; Models, Psychological; Problem Solving; Psychological Theory; Psychology/history/trends  
  Abstract The distinction between psychology and praxics provides a clear answer to the question of animal cognition. As Griffin and others have noted, the kinds of behavioral phenomena that lead psychologists to speak of cognition in humans are also observed in nonhuman animals, and therefore those who are convinced of the legitimacy of psychology should not hesitate to speak of and to attempt to study animal cognition. The behavior of organisms is also a legitimate subject matter, and praxics, the study of behavior, has led to significant advances in our understanding of the kinds of behaviors that lead psychologists to speak of cognition. Praxics is a biological science; the attempt by students of behavior to appropriate psychology has been misguided. Generativity theory is an example of a formal theory of behavior that has proved useful both in the engineering of intelligent performances in nonhuman animals and in the prediction of intelligent performances in humans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0149-7634 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:3909017 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2809  
Permanent link to this record
 

 
Author Carroll, G.L.; Matthews, N.S.; Hartsfield, S.M.; Slater, M.R.; Champney, T.H.; Erickson, S.W. openurl 
  Title The effect of detomidine and its antagonism with tolazoline on stress-related hormones, metabolites, physiologic responses, and behavior in awake ponies Type Journal Article
  Year 1997 Publication Veterinary surgery : VS : the official journal of the American College of Veterinary Surgeons Abbreviated Journal Vet Surg  
  Volume 26 Issue 1 Pages 69-77  
  Keywords Adrenergic alpha-Antagonists/administration & dosage/*pharmacology; Animals; Behavior, Animal/drug effects/physiology; Blood Glucose/metabolism; Blood Pressure/drug effects/physiology; Consciousness/physiology; Dose-Response Relationship, Drug; Drug Interactions; Epinephrine/blood; Fatty Acids, Nonesterified/blood; Female; Heart Rate/drug effects/physiology; Horse Diseases/metabolism/physiopathology/psychology; Horses/blood/metabolism/*physiology; Hydrocortisone/blood; Hypnotics and Sedatives/administration & dosage/*pharmacology; Imidazoles/administration & dosage/*pharmacology; Injections, Intravenous; Male; Norepinephrine/blood; Receptors, Adrenergic, alpha/drug effects/*physiology; Stress/metabolism/physiopathology/veterinary; Time Factors; Tolazoline/administration & dosage/*pharmacology  
  Abstract Six ponies were used to investigate the effect of tolazoline antagonism of detomidine on physiological responses, behavior, epinephrine, norepinephrine, cortisol, glucose, and free fatty acids in awake ponies. Each pony had a catheter inserted into a jugular vein 1 hour before beginning the study. Awake ponies were administered detomidine (0.04 mg/kg intravenously [i.v.]) followed 20 minutes later by either tolazoline (4.0 mg/kg i.v.) or saline. Blood samples were drawn from the catheter 5 minutes before detomidine administration (baseline), 5 minutes after detomidine administration, 20 minutes before detomidine administration which was immediately before the administration of tolazoline or saline (time [T] = 0), and at 5, 30, and 60 minutes after injections of tolazoline or saline (T = 5, 30, and 60 minutes, respectively). Compared with heart rate at T = 0, tolazoline antagonism increased heart rate 45% at 5 minutes. There was no difference in heart rate between treatments at 30 minutes. Blood pressure remained stable after tolazoline, while it decreased over time after saline. Compared with concentrations at T = 0, tolazoline antagonism of detomidine in awake ponies resulted in a 55% increase in cortisol at 30 minutes and a 52% increase in glucose at 5 minutes. The change in free fatty acids was different for tolazoline and saline over time. Free fatty acids decreased after detomidine administration. Free fatty acids did not change after saline administration. After tolazoline administration, free fatty acids increased transiently. Tolazoline tended to decrease sedation and analgesia at 15 and 60 minutes postantagonism. Antagonism of detomidine-induced physiological and behavioral effects with tolazoline in awake ponies that were not experiencing pain appears to precipitate a stress response as measured by cortisol, glucose, and free fatty acids. If antagonism of an alpha-agonist is contemplated, the potential effect on hormones and metabolites should be considered.  
  Address Department of Small Animal Medicine and Surgery, Texas A&M University, College Station, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0161-3499 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9123816 Approved no  
  Call Number refbase @ user @ Serial 96  
Permanent link to this record
 

 
Author Pritchard, J.C.; Lindberg, A.C.; Main, D.C.J.; Whay, H.R. doi  openurl
  Title Assessment of the welfare of working horses, mules and donkeys, using health and behaviour parameters Type Journal Article
  Year 2005 Publication Preventive Veterinary Medicine Abbreviated Journal Prev Vet Med  
  Volume 69 Issue 3-4 Pages 265-283  
  Keywords *Animal Welfare; Animals; Behavior, Animal; Developing Countries; *Equidae; Female; Health; Male  
  Abstract Working animals provide an essential transport resource in developing countries worldwide. Many of these animals are owned by poor people and work in harsh environments, so their welfare is a cause for concern. A protocol was developed to assess the welfare of working horses, mules and donkeys in urban and peri-urban areas, using direct observation of health and behaviour parameters. In this study, 4903 animals used for draught, pack and ridden work in Afghanistan, Egypt, India, Jordan and Pakistan were assessed between December 2002 and April 2003. The data showed that donkeys were more likely than mules or horses to demonstrate avoidance or aggressive behaviour towards an observer, while horses were most likely to make a friendly approach. Fewer than 8% of working equines had abnormal mucous membranes, ectoparasites or poor coat condition. Body lesions occurred predominantly in the areas of the breast/shoulder, withers and girth in all three species, with mules having the highest prevalence of lesions in these areas (22.5, 21.3 and 28.4%, respectively). Among horses and donkeys, the prevalence of these lesions was influenced by the type of work carried out. Lesions on the head, neck, ribs, flank and tail base were seen in less than 10% of animals. Across all three species approximately 70% of animals were thin, having a body condition score (BCS) of 2 or less on a scale of 1-5 (1, very thin; 5, very fat) and more horses were in very thin condition (BCS 1) than mules or donkeys. Over 75% of animals demonstrated limb deformities and abnormalities of gait. The results of this study are being used as the initial stage of a long-term strategy to inform priorities for welfare interventions in working equines and to establish a welfare benchmark. Subsequent stages will rank the welfare concerns identified, assess the contributing risk factors and implement specific interventions to address these risks. Following intervention, success in improving welfare will be measured by repetition of this protocol and comparison with the benchmark.  
  Address Department of Clinical Veterinary Science, University of Bristol, Langford, Bristol BS40 5DU, UK. joy.pritchard@bristol.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0167-5877 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15907574 Approved no  
  Call Number Serial 1889  
Permanent link to this record
 

 
Author Landsberg, G.; Araujo, J.A. doi  openurl
  Title Behavior problems in geriatric pets Type Journal Article
  Year 2005 Publication The Veterinary Clinics of North America. Small Animal Practice Abbreviated Journal Vet Clin North Am Small Anim Pract  
  Volume 35 Issue 3 Pages 675-698  
  Keywords Aging/*pathology/physiology/*psychology; Animals; *Behavior, Animal; Cats/*physiology/psychology; Cognition/physiology; Diagnosis, Differential; Dogs/*physiology/psychology; Preventive Medicine  
  Abstract Aging pets often suffer a decline in cognitive function (eg, memory,learning, perception, awareness) likely associated with age-dependent brain alterations. Clinically, cognitive dysfunction may result in various behavioral signs, including disorientation; forgetting of previously learned behaviors, such as house training; alterations in the manner in which the pet interacts with people or other pets;onset of new fears and anxiety; decreased recognition of people, places, or pets; and other signs of deteriorating memory and learning ability. Many medical problems, including other forms of brain pathologic conditions, can contribute to these signs. The practitioner must first determine the cause of the behavioral signs and then determine an appropriate course of treatment, bearing in mind the constraints of the aging process. A diagnosis of cognitive dysfunction syndrome is made once other medical and behavioral causes are ruled out.  
  Address Doncaster Animal Clinic, 99 Henderson Avenue, Thornhill, Ontario L3T2K9, Canada. gmlandvm@aol.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0195-5616 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15833565 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2855  
Permanent link to this record
 

 
Author Momozawa, Y.; Takeuchi, Y.; Tozaki, T.; Kikusui, T.; Hasegawa, T.; Raudsepp, T.; Chowdhary, B.P.; Kusunose, R.; Mori, Y. doi  openurl
  Title SNP detection and radiation hybrid mapping in horses of nine candidate genes for temperament Type Journal Article
  Year 2007 Publication Animal Genetics Abbreviated Journal Anim Genet  
  Volume 38 Issue 1 Pages 81-83  
  Keywords Animals; *Behavior, Animal; Breeding; Horses/*genetics/physiology; *Polymorphism, Single Nucleotide; Radiation Hybrid Mapping; *Temperament  
  Abstract  
  Address Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo 113-8657, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0268-9146 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17257195 Approved no  
  Call Number Serial 1834  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print