toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gentner, T.Q.; Fenn, K.M.; Margoliash, D.; Nusbaum, H.C. doi  openurl
  Title Recursive syntactic pattern learning by songbirds Type Journal Article
  Year 2006 Publication Nature Abbreviated Journal Nature  
  Volume 440 Issue 7088 Pages 1204-1207  
  Keywords Acoustic Stimulation; *Animal Communication; Animals; Auditory Perception/*physiology; Humans; *Language; Learning/*physiology; Linguistics; Models, Neurological; Semantics; Starlings/*physiology; Stochastic Processes  
  Abstract Humans regularly produce new utterances that are understood by other members of the same language community. Linguistic theories account for this ability through the use of syntactic rules (or generative grammars) that describe the acceptable structure of utterances. The recursive, hierarchical embedding of language units (for example, words or phrases within shorter sentences) that is part of the ability to construct new utterances minimally requires a 'context-free' grammar that is more complex than the 'finite-state' grammars thought sufficient to specify the structure of all non-human communication signals. Recent hypotheses make the central claim that the capacity for syntactic recursion forms the computational core of a uniquely human language faculty. Here we show that European starlings (Sturnus vulgaris) accurately recognize acoustic patterns defined by a recursive, self-embedding, context-free grammar. They are also able to classify new patterns defined by the grammar and reliably exclude agrammatical patterns. Thus, the capacity to classify sequences from recursive, centre-embedded grammars is not uniquely human. This finding opens a new range of complex syntactic processing mechanisms to physiological investigation.  
  Address Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637, USA. tgentner@ucsd.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16641998 Approved no  
  Call Number refbase @ user @ Serial 353  
Permanent link to this record
 

 
Author Heffner, R.S.; Heffner, H.E. url  openurl
  Title Localization of tones by horses: use of binaural cues and the role of the superior olivary complex Type Journal Article
  Year 1986 Publication Behavioral Neuroscience Abbreviated Journal Behav Neurosci  
  Volume 100 Issue 1 Pages 93-103  
  Keywords Animals; Auditory Pathways/physiology; Auditory Perception/*physiology; Avoidance Learning/physiology; Brain Mapping; Electroshock; Female; Horses/*physiology; Male; Olivary Nucleus/anatomy & histology/*physiology; Orientation/physiology; Pitch Perception/physiology; Sound Localization/*physiology  
  Abstract The ability of horses to use binaural time and intensity difference cues to localize sound was assessed in free-field localization tests by using pure tones. The animals were required to discriminate the locus of a single tone pip ranging in frequency from 250 Hz to 25 kHz emitted by loudspeakers located 30 degrees to the left and right of the animals' midline (60 degrees total separation). Three animals were tested with a two-choice procedure; 2 additional animals were tested with a conditioned avoidance procedure. All 5 animals were able to localize 250 Hz, 500 Hz, and 1 kHz but were completely unable to localize 2 kHz and above. Because the frequency of ambiguity for the binaural phase cue delta phi for horses in this test was calculated to be 1.5 kHz, these results indicate that horses can use binaural time differences in the form of delta phi but are unable to use binaural intensity differences. This finding was supported by an unconditioned orientation test involving 4 additional horses, which showed that horses correctly orient to a 500-Hz tone pip but not to an 8-kHz tone pip. Analysis of the superior olivary complex, the brain stem nucleus at which binaural interactions first take place, reveals that the lateral superior olive (LSO) is relatively small in the horse and lacks the laminar arrangement of bipolar cells characteristic of the LSO of most mammals that can use binaural delta I.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7044 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:3954885 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5634  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print