|   | 
Details
   web
Records
Author Levy, J.
Title (up) The mammalian brain and the adaptive advantage of cerebral asymmetry Type Journal Article
Year 1977 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci
Volume 299 Issue Pages 264-272
Keywords *Adaptation, Physiological; Adaptation, Psychological/physiology; Animals; Behavior, Animal/physiology; Brain/*physiology; Cognition/physiology; Dominance, Cerebral/*physiology; *Evolution; Humans; Intelligence; Perception/physiology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923 ISBN Medium
Area Expedition Conference
Notes PMID:280207 Approved no
Call Number Equine Behaviour @ team @ Serial 4137
Permanent link to this record
 

 
Author Yokoyama, S.; Radlwimmer, F.B.
Title (up) The molecular genetics of red and green color vision in mammals Type Journal Article
Year 1999 Publication Genetics Abbreviated Journal Genetics
Volume 153 Issue 2 Pages 919-932
Keywords Amino Acid Sequence; Animals; Base Sequence; COS Cells; Cats; Color Perception/*genetics; DNA Primers; Deer; Dolphins; *Evolution, Molecular; Goats; Guinea Pigs; Horses; Humans; Mammals/*genetics/physiology; Mice; Molecular Sequence Data; Opsin/biosynthesis/chemistry/*genetics; *Phylogeny; Rabbits; Rats; Recombinant Proteins/biosynthesis; Reverse Transcriptase Polymerase Chain Reaction; Sciuridae; Sequence Alignment; Sequence Homology, Amino Acid; Transfection
Abstract To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the “true” red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia).
Address Department of Biology, Syracuse University, Syracuse, New York 13244, USA. syokoyam@mailbox.syr.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6731 ISBN Medium
Area Expedition Conference
Notes PMID:10511567 Approved no
Call Number Equine Behaviour @ team @ Serial 4063
Permanent link to this record
 

 
Author Parish, A.R.; De Waal, F.B.
Title (up) The other “closest living relative”. How bonobos (Pan paniscus) challenge traditional assumptions about females, dominance, intra- and intersexual interactions, and hominid evolution Type Journal Article
Year 2000 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci
Volume 907 Issue Pages 97-113
Keywords Animals; *Evolution; Female; Hominidae/*physiology; Humans; *Interpersonal Relations; Male; Pan paniscus/*physiology; Sexual Behavior, Animal/*physiology
Abstract Chimpanzee (Pan troglodytes) societies are typically characterized as physically aggressive, male-bonded and male-dominated. Their close relatives, the bonobos (Pan paniscus), differ in startling and significant ways. For instance, female bonobos bond with one another, form coalitions, and dominate males. A pattern of reluctance to consider, let alone acknowledge, female dominance in bonobos exists, however. Because both species are equally “man's” closest relative, the bonobo social system complicates models of human evolution that have historically been based upon referents that are male and chimpanzee-like. The bonobo evidence suggests that models of human evolution must be reformulated such that they also accommodate: real and meaningful female bonds; the possibility of systematic female dominance over males; female mating strategies which encompass extra-group paternities; hunting and meat distribution by females; the importance of the sharing of plant foods; affinitive inter-community interactions; males that do not stalk and attack and are not territorial; and flexible social relationships in which philopatry does not necessarily predict bonding pattern.
Address Department of Anthropology, University College London, England
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923 ISBN Medium
Area Expedition Conference
Notes PMID:10818623 Approved no
Call Number refbase @ user @ Serial 189
Permanent link to this record
 

 
Author Barrett, L.; Henzi, P.
Title (up) The social nature of primate cognition Type Journal Article
Year 2005 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 272 Issue 1575 Pages 1865-1875
Keywords Animals; Brain/anatomy & histology/*physiology; Cognition/*physiology; *Evolution; Intelligence/*physiology; Primates/*physiology; *Social Behavior
Abstract The hypothesis that the enlarged brain size of the primates was selected for by social, rather than purely ecological, factors has been strongly influential in studies of primate cognition and behaviour over the past two decades. However, the Machiavellian intelligence hypothesis, also known as the social brain hypothesis, tends to emphasize certain traits and behaviours, like exploitation and deception, at the expense of others, such as tolerance and behavioural coordination, and therefore presents only one view of how social life may shape cognition. This review outlines work from other relevant disciplines, including evolutionary economics, cognitive science and neurophysiology, to illustrate how these can be used to build a more general theoretical framework, incorporating notions of embodied and distributed cognition, in which to situate questions concerning the evolution of primate social cognition.
Address School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK. louiseb@liv.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:16191591 Approved no
Call Number Serial 2086
Permanent link to this record
 

 
Author Joffe, T.H.; Dunbar, R.I.
Title (up) Visual and socio-cognitive information processing in primate brain evolution Type Journal Article
Year 1997 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 264 Issue 1386 Pages 1303-1307
Keywords Animals; Brain/anatomy & histology/*physiology; Cognition/physiology; *Evolution; Geniculate Bodies/anatomy & histology/physiology; Humans; Mental Processes/physiology; Neocortex/physiology; Primates/anatomy & histology/*physiology/*psychology; *Social Behavior; Visual Cortex/anatomy & histology/physiology
Abstract Social group size has been shown to correlate with neocortex size in primates. Here we use comparative analyses to show that social group size is independently correlated with the size of non-V1 neocortical areas, but not with other more proximate components of the visual system or with brain systems associated with emotional cueing (e.g. the amygdala). We argue that visual brain components serve as a social information 'input device' for socio-visual stimuli such as facial expressions, bodily gestures and visual status markers, while the non-visual neocortex serves as a 'processing device' whereby these social cues are encoded, interpreted and associated with stored information. However, the second appears to have greater overall importance because the size of the V1 visual area appears to reach an asymptotic size beyond which visual acuity and pattern recognition may not improve significantly. This is especially true of the great ape clade (including humans), that is known to use more sophisticated social cognitive strategies.
Address School of Life Sciences, University of Liverpool, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:9332015 Approved no
Call Number Serial 2095
Permanent link to this record
 

 
Author Sukhomlinov, B.F.; Korobov, V.N.; Gonchar, M.V.; Datsiuk, L.A.; Korzhev, V.A.
Title (up) [Comparative analysis of the peroxidase activity of myoglobins in mammals] Type Journal Article
Year 1987 Publication Zhurnal Evoliutsionnoi Biokhimii i Fiziologii Abbreviated Journal Zh Evol Biokhim Fiziol
Volume 23 Issue 1 Pages 37-41
Keywords Amino Acid Sequence; Animals; Ecology; *Evolution; Kinetics; Mammals/*metabolism; Myoglobin/*metabolism; Peroxidases/*metabolism
Abstract Studies have been made on the peroxidase activity of metmyoglobins in animals from various ecological groups--the horse Equus caballus, cattle Bos taurus, beaver Castor fiber, otter Lutra lutra, mink Mustela vison and dog Canis familiaris. It was found that the level of this activity in diving animals depends on the duration of their diving, whereas in terrestrial species--on the strength of muscular contraction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title Sravnitel'nyi analiz peroksidaznoi aktivnosti mioglobinov u mlekopitaiushchikh
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0044-4529 ISBN Medium
Area Expedition Conference
Notes PMID:3564776 Approved no
Call Number Equine Behaviour @ team @ Serial 2681
Permanent link to this record