toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nettle, D. doi  openurl
  Title The evolution of personality variation in humans and other animals Type Journal Article
  Year 2006 Publication The American Psychologist Abbreviated Journal Am Psychol  
  Volume 61 Issue 6 Pages 622-631  
  Keywords (up) Animals; Birds; *Evolution; Female; Fishes; Humans; Insects; Male; Personality/*genetics/*physiology  
  Abstract A comprehensive evolutionary framework for understanding the maintenance of heritable behavioral variation in humans is yet to be developed. Some evolutionary psychologists have argued that heritable variation will not be found in important, fitness-relevant characteristics because of the winnowing effect of natural selection. This article propounds the opposite view. Heritable variation is ubiquitous in all species, and there are a number of frameworks for understanding its persistence. The author argues that each of the Big Five dimensions of human personality can be seen as the result of a trade-off between different fitness costs and benefits. As there is no unconditionally optimal value of these trade-offs, it is to be expected that genetic diversity will be retained in the population.  
  Address University of Newcastle, Newcastle, United Kingdom. daniel.nettle@ncl.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-066X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16953749 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4105  
Permanent link to this record
 

 
Author Macfadden, B.J. doi  openurl
  Title Evolution. Fossil horses--evidence for evolution Type Journal Article
  Year 2005 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 307 Issue 5716 Pages 1728-1730  
  Keywords (up) Animals; Body Size; DNA, Mitochondrial; Diet; *Equidae/anatomy & histology/classification/genetics; *Evolution; Feeding Behavior; *Fossils; *Horses/anatomy & histology/classification/genetics; Paleodontology; Phylogeny; Time; Tooth/anatomy & histology  
  Abstract  
  Address Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA. bmacfadd@flmnh.ufl.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1095-9203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15774746 Approved no  
  Call Number Serial 1892  
Permanent link to this record
 

 
Author Shoshani, J.; Kupsky, W.J.; Marchant, G.H. doi  openurl
  Title Elephant brain. Part I: gross morphology, functions, comparative anatomy, and evolution Type Journal Article
  Year 2006 Publication Brain Research Bulletin Abbreviated Journal Brain Res Bull  
  Volume 70 Issue 2 Pages 124-157  
  Keywords (up) Animals; Brain/*anatomy & histology/blood supply/*physiology; Cats; Chinchilla; Elephants/*anatomy & histology/*physiology; Equidae; *Evolution; Female; Guinea Pigs; Haplorhini; Humans; Hyraxes; Male; Pan troglodytes; Sheep; Wolves  
  Abstract We report morphological data on brains of four African, Loxodonta africana, and three Asian elephants, Elephas maximus, and compare findings to literature. Brains exhibit a gyral pattern more complex and with more numerous gyri than in primates, humans included, and in carnivores, but less complex than in cetaceans. Cerebral frontal, parietal, temporal, limbic, and insular lobes are well developed, whereas the occipital lobe is relatively small. The insula is not as opercularized as in man. The temporal lobe is disproportionately large and expands laterally. Humans and elephants have three parallel temporal gyri: superior, middle, and inferior. Hippocampal sizes in elephants and humans are comparable, but proportionally smaller in elephant. A possible carotid rete was observed at the base of the brain. Brain size appears to be related to body size, ecology, sociality, and longevity. Elephant adult brain averages 4783 g, the largest among living and extinct terrestrial mammals; elephant neonate brain averages 50% of its adult brain weight (25% in humans). Cerebellar weight averages 18.6% of brain (1.8 times larger than in humans). During evolution, encephalization quotient has increased by 10-fold (0.2 for extinct Moeritherium, approximately 2.0 for extant elephants). We present 20 figures of the elephant brain, 16 of which contain new material. Similarities between human and elephant brains could be due to convergent evolution; both display mosaic characters and are highly derived mammals. Humans and elephants use and make tools and show a range of complex learning skills and behaviors. In elephants, the large amount of cerebral cortex, especially in the temporal lobe, and the well-developed olfactory system, structures associated with complex learning and behavioral functions in humans, may provide the substrate for such complex skills and behavior.  
  Address Department of Biology, University of Asmara, P.O. Box 1220, Asmara, Eritrea (Horn of Africa). hezy@bio.uoa.edu.er  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0361-9230 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16782503 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2623  
Permanent link to this record
 

 
Author Barrett, L.; Henzi, P. doi  openurl
  Title The social nature of primate cognition Type Journal Article
  Year 2005 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci  
  Volume 272 Issue 1575 Pages 1865-1875  
  Keywords (up) Animals; Brain/anatomy & histology/*physiology; Cognition/*physiology; *Evolution; Intelligence/*physiology; Primates/*physiology; *Social Behavior  
  Abstract The hypothesis that the enlarged brain size of the primates was selected for by social, rather than purely ecological, factors has been strongly influential in studies of primate cognition and behaviour over the past two decades. However, the Machiavellian intelligence hypothesis, also known as the social brain hypothesis, tends to emphasize certain traits and behaviours, like exploitation and deception, at the expense of others, such as tolerance and behavioural coordination, and therefore presents only one view of how social life may shape cognition. This review outlines work from other relevant disciplines, including evolutionary economics, cognitive science and neurophysiology, to illustrate how these can be used to build a more general theoretical framework, incorporating notions of embodied and distributed cognition, in which to situate questions concerning the evolution of primate social cognition.  
  Address School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK. louiseb@liv.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16191591 Approved no  
  Call Number Serial 2086  
Permanent link to this record
 

 
Author Joffe, T.H.; Dunbar, R.I. doi  openurl
  Title Visual and socio-cognitive information processing in primate brain evolution Type Journal Article
  Year 1997 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci  
  Volume 264 Issue 1386 Pages 1303-1307  
  Keywords (up) Animals; Brain/anatomy & histology/*physiology; Cognition/physiology; *Evolution; Geniculate Bodies/anatomy & histology/physiology; Humans; Mental Processes/physiology; Neocortex/physiology; Primates/anatomy & histology/*physiology/*psychology; *Social Behavior; Visual Cortex/anatomy & histology/physiology  
  Abstract Social group size has been shown to correlate with neocortex size in primates. Here we use comparative analyses to show that social group size is independently correlated with the size of non-V1 neocortical areas, but not with other more proximate components of the visual system or with brain systems associated with emotional cueing (e.g. the amygdala). We argue that visual brain components serve as a social information 'input device' for socio-visual stimuli such as facial expressions, bodily gestures and visual status markers, while the non-visual neocortex serves as a 'processing device' whereby these social cues are encoded, interpreted and associated with stored information. However, the second appears to have greater overall importance because the size of the V1 visual area appears to reach an asymptotic size beyond which visual acuity and pattern recognition may not improve significantly. This is especially true of the great ape clade (including humans), that is known to use more sophisticated social cognitive strategies.  
  Address School of Life Sciences, University of Liverpool, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9332015 Approved no  
  Call Number Serial 2095  
Permanent link to this record
 

 
Author Kiltie, R.A.; Fan, J.; Laine, A.F. openurl 
  Title A wavelet-based metric for visual texture discrimination with applications in evolutionary ecology Type Journal Article
  Year 1995 Publication Mathematical Biosciences Abbreviated Journal Math Biosci  
  Volume 126 Issue 1 Pages 21-39  
  Keywords (up) Animals; Carnivora; *Ecology; Equidae; *Evolution; Humans; Mathematics; Models, Biological; Moths; *Pattern Recognition, Visual; Pigmentation  
  Abstract Much work on natural and sexual selection is concerned with the conspicuousness of visual patterns (textures) on animal and plant surfaces. Previous attempts by evolutionary biologists to quantify apparency of such textures have involved subjective estimates of conspicuousness or statistical analyses based on transect samples. We present a method based on wavelet analysis that avoids subjectivity and that uses more of the information in image textures than transects do. Like the human visual system for texture discrimination, and probably like that of other vertebrates, this method is based on localized analysis of orientation and frequency components of the patterns composing visual textures. As examples of the metric's utility, we present analyses of crypsis for tigers, zebras, and peppered moth morphs.  
  Address Department of Zoology, University of Florida, Gainesville  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5564 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:7696817 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2660  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print