toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dougherty, D.M.; Lewis, P. doi  openurl
  Title Stimulus generalization, discrimination learning, and peak shift in horses Type Journal Article
  Year 1991 Publication Journal of the experimental analysis of behavior Abbreviated Journal J Exp Anal Behav  
  Volume 56 Issue 1 Pages 97-104  
  Keywords Animals; *Appetitive Behavior; Attention; *Conditioning, Operant; *Discrimination Learning; Female; *Generalization, Stimulus; Horses/*psychology; Male; *Pattern Recognition, Visual; Size Perception  
  Abstract Using horses, we investigated three aspects of the stimulus control of lever-pressing behavior: stimulus generalization, discrimination learning, and peak shift. Nine solid black circles, ranging in size from 0.5 in. to 4.5 in. (1.3 cm to 11.4 cm) served as stimuli. Each horse was shaped, using successive approximations, to press a rat lever with its lip in the presence of a positive stimulus, the 2.5-in. (6.4-cm) circle. Shaping proceeded quickly and was comparable to that of other laboratory organisms. After responding was maintained on a variable-interval 30-s schedule, stimulus generalization gradients were collected from 2 horses prior to discrimination training. During discrimination training, grain followed lever presses in the presence of a positive stimulus (a 2.5-in circle) and never followed lever presses in the presence of a negative stimulus (a 1.5-in. [3.8-cm] circle). Three horses met a criterion of zero responses to the negative stimulus in fewer than 15 sessions. Horses given stimulus generalization testing prior to discrimination training produced symmetrical gradients; horses given discrimination training prior to generalization testing produced asymmetrical gradients. The peak of these gradients shifted away from the negative stimulus. These results are consistent with discrimination, stimulus generalization, and peak-shift phenomena observed in other organisms.  
  Address Department of Psychology, Ohio University, Athens 45701  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5002 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1940765 Approved no  
  Call Number (up) Serial 1764  
Permanent link to this record
 

 
Author Topál, J.; Byrne, R.W.; Miklósi, Á.; Csányi, V. doi  openurl
  Title Reproducing human actions and action sequences: “Do as I Do!” in a dog Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 355-367  
  Keywords Animals; *Comprehension; Conditioning, Operant; *Discrimination Learning; Dogs/*psychology; Humans; *Imitative Behavior; Male; *Serial Learning  
  Abstract We present evidence that a dog (Philip, a 4-year-old tervueren) was able to use different human actions as samples against which to match his own behaviour. First, Philip was trained to repeat nine human-demonstrated actions on command ('Do it!'). When his performance was markedly over chance in response to demonstration by one person, testing with untrained action sequences and other demonstrators showed some ability to generalise his understanding of copying. In a second study, we presented Philip with a sequence of human actions, again using the 'Do as I do' paradigm. All demonstrated actions had basically the same structure: the owner picked up a bottle from one of six places; transferred it to one of the five other places and then commanded the dog ('Do it!'). We found that Philip duplicated the entire sequence of moving a specific object from one particular place to another more often than expected by chance. Although results point to significant limitations in his imitative abilities, it seems that the dog could have recognized the action sequence, on the basis of observation alone, in terms of the initial state, the means, and the goal. This suggests that dogs might acquire abilities by observation that enhance their success in complex socio-behavioural situations.  
  Address Comparative Ethology Research Group, Hungarian Academy of Sciences, Budapest, Pazmany, P. 1/c H-1117, Hungary. kea@t-online.hu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17024511 Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 2434  
Permanent link to this record
 

 
Author Call, J. doi  openurl
  Title Inferences by exclusion in the great apes: the effect of age and species Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 393-403  
  Keywords Age Factors; Animals; Association Learning; *Cognition; *Concept Formation; *Discrimination Learning; Female; Gorilla gorilla; Hominidae/classification/*psychology; Male; Pan paniscus; Pan troglodytes; Pongo pygmaeus; *Problem Solving; Species Specificity  
  Abstract This study investigated the ability of chimpanzees, gorillas, orangutans, and bonobos to make inferences by exclusion using the procedure pioneered by Premack and Premack (Cognition 50:347-362, 1994) with chimpanzees. Thirty apes were presented with two different food items (banana vs. grape) on a platform and covered with identical containers. One of the items was removed from the container and placed between the two containers so that subjects could see it. After discarding this item, subjects could select between the two containers. In Experiment 1, apes preferentially selected the container that held the item that the experimenter had not discarded, especially if subjects saw the experimenter remove the item from the container (but without seeing the container empty). Experiment 3 in which the food was removed from one of the containers behind a barrier confirmed these results. In contrast, subjects performed at chance levels when a stimulus (colored plastic chip: Exp. 1; food item: Exp. 2 and Exp. 3) designated the item that had been removed. These results indicated that apes made inferences, not just learned to use a discriminative cue to avoid the empty container. Apes perceived and treated the item discarded by the experimenter as if it were the very one that had been hidden under the container. Results suggested a positive relationship between age and inferential ability independent of memory ability but no species differences.  
  Address Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany. call@eva.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16924458 Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 2444  
Permanent link to this record
 

 
Author Sovrano, V.A.; Bisazza, A.; Vallortigara, G. doi  openurl
  Title How fish do geometry in large and in small spaces Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 1 Pages 47-54  
  Keywords Animals; *Association Learning; Color Perception; Cues; *Discrimination Learning; *Distance Perception; *Fishes; Male; Pattern Recognition, Visual; Social Environment; *Space Perception; Visual Perception  
  Abstract It has been shown that children and non-human animals seem to integrate geometric and featural information to different extents in order to reorient themselves in environments of different spatial scales. We trained fish (redtail splitfins, Xenotoca eiseni) to reorient to find a corner in a rectangular tank with a distinctive featural cue (a blue wall). Then we tested fish after displacement of the feature on another adjacent wall. In the large enclosure, fish chose the two corners with the feature, and also tended to choose among them the one that maintained the correct arrangement of the featural cue with respect to geometric sense (i.e. left-right position). In contrast, in the small enclosure, fish chose both the two corners with the features and the corner, without any feature, that maintained the correct metric arrangement of the walls with respect to geometric sense. Possible reasons for species differences in the use of geometric and non-geometric information are discussed.  
  Address Department of General Psychology, University of Padua, Via Venezia, 8, 35131, Padova, Italy. valeriaanna.sovrano@unipd.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16794851 Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 2462  
Permanent link to this record
 

 
Author Mulcahy, N.J.; Call, J. doi  openurl
  Title How great apes perform on a modified trap-tube task Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 3 Pages 193-199  
  Keywords Animals; *Discrimination Learning; Female; Gorilla gorilla; Hominidae/*psychology; *Intelligence; Male; *Motor Skills; Pan paniscus; Pan troglodytes; Pongo pygmaeus; *Problem Solving; Species Specificity  
  Abstract To date, neither primates nor birds have shown clear evidence of causal knowledge when attempting to solve the trap tube task. One factor that may have contributed to mask the knowledge that subjects may have about the task is that subjects were only allowed to push the reward away from them, which is a particularly difficult action for primates in certain problem solving situations. We presented five orangutans (Pongo pygmaeus), two chimpanzees (Pan troglodytes), two bonobos (Pan paniscus), and one gorilla (Gorilla gorilla) with a modified trap tube that allowed subjects to push or rake the reward with the tool. In two additional follow-up tests, we inverted the tube 180 degrees rendering the trap nonfunctional and also presented subjects with the original task in which they were required to push the reward out of the tube. Results showed that all but one of the subjects preferred to rake the reward. Two orangutans and one chimpanzee (all of whom preferred to rake the reward), consistently avoided the trap only when it was functional but failed the original task. These findings suggest that some great apes may have some causal knowledge about the trap-tube task. Their success, however, depended on whether they were allowed to choose certain tool-using actions.  
  Address Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany. mulcahy@eva.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16612632 Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 2469  
Permanent link to this record
 

 
Author Harris, E.H.; Washburn, D.A. doi  openurl
  Title Macaques' (Macaca mulatta) use of numerical cues in maze trials Type Journal Article
  Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 3 Pages 190-199  
  Keywords Animals; *Cues; *Discrimination Learning; Macaca mulatta/*psychology; Male; Mathematics; *Maze Learning; *Pattern Recognition, Visual  
  Abstract We tested the ability of number-trained rhesus monkeys to use Arabic numeral cues to discriminate between different series of maze trials and anticipate the final trial in each series. The monkeys' prior experience with numerals also allowed us to investigate spontaneous transfer between series. A total of four monkeys were tested in two experiments. In both experiments, the monkeys were trained on a computerized task consisting of three reinforced maze trials followed by one nonreinforced trial. The goal of the maze was an Arabic numeral 3, which corresponded to the number of reinforced maze trials in the series. In experiment 1 (n=2), the monkeys were given probe trials of the numerals 2 and 4 and in experiment 2 (n=2), they were given probe trials of the numerals 2-8. The monkeys receiving the probe trials 2 and 4 showed some generalization to the new numerals and developed a pattern of performing more slowly on the nonreinforced trial than the reinforced trial before it for most series, indicating the use of the changing numeral cues to anticipate the nonreinforced trial. The monkeys receiving probe trials of the numerals 2-8 did not predict precisely when the nonreinforced trial would occur in each series, but they did incorporate the changing numerals into their strategy for performing the task. This study provides the first evidence that number-trained monkeys can use Arabic numerals to perform a task involving sequential presentations.  
  Address Georgia State University, Atlanta, GA, USA. eharris11@gsu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15654597 Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 2498  
Permanent link to this record
 

 
Author Ferkin, M.H.; Pierce, A.A.; Sealand, R.O.; Delbarco-Trillo, J. doi  openurl
  Title Meadow voles, Microtus pennsylvanicus, can distinguish more over-marks from fewer over-marks Type Journal Article
  Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 3 Pages 182-189  
  Keywords Animals; Arvicolinae/*psychology; *Discrimination Learning; Female; Intermediate Filament Proteins; Male; Mathematics; Sex Factors; *Smell  
  Abstract Is it possible that voles have a sense of number? To address this question, we determined whether voles discriminate between two different scent-marking individuals and identify the individual whose scent marks was on top more often than the other individual. We tested whether voles show a preference for the individual whose scent marks was on top most often. If so, the simplest explanation was that voles can make a relative size judgement-such as distinguishing an area containing more of one individual's over-marks as compared to less of another individual's over-marks. We found that voles respond preferentially to the donor that provided a greater number of over-marks as compared to the donor that provided a lesser number of over-marks. Thus, we concluded that voles might display the capacity for relative numerousness. Interestingly, female voles were better able than male voles to distinguish between small differences in the relative number of over-marks by the two scent donors.  
  Address Department of Biology, The University of Memphis, Ellington Hall, Memphis, TN 38152, USA. mhferkin@memphis.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15580367 Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 2501  
Permanent link to this record
 

 
Author Werner, C.W.; Tiemann, I.; Cnotka, J.; Rehkamper, G. doi  openurl
  Title Do chickens (Gallus gallus f. domestica) decompose visual figures? Type Journal Article
  Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 2 Pages 129-140  
  Keywords Animals; *Chickens; Conditioning, Classical; *Discrimination Learning; Female; *Pattern Recognition, Visual; Photic Stimulation; *Visual Perception  
  Abstract To investigate whether learning to discriminate between visual compound stimuli depends on decomposing them into constituting features, hens were first trained to discriminate four features (red, green, horizontal, vertical) from two dimensions (colour, line orientation). After acquisition, hens were trained with compound stimuli made up from these dimensions in two ways: a separable (line on a coloured background) stimulus and an integral one (coloured line). This compound training included a reversal of reinforcement of only one of the two dimensions (half-reversal). After having achieved the compound stimulus discrimination, a second dimensional training identical to the first was performed. Finally, in the second compound training the other dimension was reversed. Two major results were found: (1) an interaction between the dimension reversed and the type of compound stimulus: in compound training with colour reversal, separable compound stimuli were discriminated worse than integral compounds and vice versa in compound training with line orientation reversed. (2) Performance in the second compound training was worse than in the first one. The first result points to a similar mode of processing for separable and integral compounds, whereas the second result shows that the whole stimulus is psychologically superior to its constituting features. Experiment 2 repeated experiment 1 using line orientation stimuli of reversed line and background brightness. Nevertheless, the results were similar to experiment 1. Results are discussed in the framework of a configural exemplar theory of discrimination that assumes the representation of the whole stimulus situation combined with transfer based on a measure of overall similarity.  
  Address C. and O. Vogt Institute of Brain Research, Heinrich Heine University Dusseldorf, Universitatsstr. 1, 40225, Dusseldorf, Germany. wernerc@uni-duesseldorf.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15490291 Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 2503  
Permanent link to this record
 

 
Author Zucca, P.; Antonelli, F.; Vallortigara, G. doi  openurl
  Title Detour behaviour in three species of birds: quails (Coturnix sp.), herring gulls (Larus cachinnans) and canaries (Serinus canaria) Type Journal Article
  Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 2 Pages 122-128  
  Keywords Animals; *Avoidance Learning; *Birds; Canaries; Charadriiformes; Coturnix; *Discrimination Learning; Orientation; *Space Perception; *Spatial Behavior; Species Specificity  
  Abstract Detour behaviour is the ability of an animal to reach a goal stimulus by moving round any interposed obstacle. It has been widely studied and has been proposed as a test of insight learning in several species of mammals, but few data are available in birds. A comparative study in three species of birds, belonging to different eco-ethological niches, allows a better understanding of the cognitive mechanism of such detour behaviour. Young quails (Coturnix sp.), herring gulls (Larus cachinnans) and canaries (Serinus canaria), 1 month old, 10-25 days old and 4-6 months old, respectively, were tested in a detour situation requiring them to abandon a clear view of a biologically interesting object (their own reflection in a mirror) in order to approach that object. Birds were placed in a closed corridor, at one end of which was a barrier through which the object was visible. Four different types of barrier were used: vertical bar, horizontal bar, grid and transparent. Two symmetrical apertures placed midline in the corridor allowed the birds to adopt routes passing around the barrier. After entering the apertures, birds could turn either right or left to re-establish social contact with the object in the absence of any local sensory cues emanating from it. Quails appeared able to solve the task, though their performance depended on the type of barrier used, which appeared to modulate their relative interest in approaching the object or in exploring the surroundings. Young herring gulls also showed excellent abilities to locate spatially the out-of-view object, except when the transparent barrier was used. Canaries, on the other hand, appeared completely unable to solve the detour task, whatever barrier was in use. It is suggested that these species differences can be accounted for in terms of adaptation to a terrestrial or aerial environment.  
  Address Laboratory of Animal Cognition and Comparative Neuroscience, Department of Psychology, University of Trieste, Via S. Anastasio 12, 34100, Trieste, Italy. zucca@units.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15449104 Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 2506  
Permanent link to this record
 

 
Author Gazit, I.; Goldblatt, A.; Terkel, J. doi  openurl
  Title The role of context specificity in learning: the effects of training context on explosives detection in dogs Type Journal Article
  Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 3 Pages 143-150  
  Keywords Animals; *Association Learning; Conditioning, Classical; *Discrimination Learning; Dogs; *Environment; *Generalization, Stimulus; *Smell  
  Abstract Various experiments revealed that if an animal learns a stimulus-response-reinforcer relationship in one context and is then tested in another context there is usually a lessening of stimulus control, and the same discriminative stimuli that reliably controlled the behavior in the first context will have less effect in the new context. This reduction in performance is known as the “context shift effect.” The effect of changing context on the probability of detecting explosives was investigated in seven highly trained explosives detection dogs (EDDs). In experiment 1 the dogs were trained alternately on path A, which always had five hidden explosives, and on a very similar path B, which never had any explosives. Within a few sessions the dogs showed a significant decrease in search behavior on path B, but not on path A. In experiment 2 the same dogs were trained only on path B with a target density of one explosive hidden every 4th day. The probability of the dogs now detecting the explosive was found to be significantly lower than in experiment 1. In experiment 3 the effect of the low target density as used in experiment 2 was investigated on a new but very similar path C. Both the detection probability for the one explosive every 4th day on the new path and the motivation to search were significantly higher than found in experiment 2. Finally, in experiment 4, an attempt was made to recondition the dogs to search on path B. Although trained for 12 daily sessions with one explosive hidden every session, the dogs failed to regain the normal levels of motivation they had shown on both new paths and on the paths that they knew usually contained explosives. The findings reveal that even a very intensively trained EDD will rapidly learn that a specific stretch of path does not contain explosives. The dog will then be less motivated to search and will miss newly placed targets. This learning is specific to the formerly always-clean path and is to some extent irreversible. However, the dog will search and detect normally on new paths even if they are very similar to the always-clean path. The data are discussed in terms of variables affecting renewal. The results suggest that following training designed to make a behavior “context independent,” any extinction training will not generalize beyond that specific context used during the extinction training. In addition, if the behavior is extinguished in a specific context, it will be very difficult to restore that behavior in that context. These conclusions should be considered by anyone attempting to extinguish well-established trans-context behaviors.  
  Address Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel. iritgazi@post.tau.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15449101 Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 2509  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print