toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Sterck, E.; Watts, D.; van Schaik, C. doi  openurl
  Title The evolution of female social relationships in nonhuman primates Type Journal Article
  Year 1997 Publication Behavioral Ecology and Sociobiology Abbreviated Journal Behav. Ecol. Sociobiol.  
  Volume 41 Issue 5 Pages 291-309  
  Keywords ecology; matrilocal; primate; social; theory  
  Abstract Considerable interspeci®c variation in female social relationships occurs in gregarious primates, particularly with regard to agonism and cooperation between females and to the quality of female relationships with males. This variation exists alongside variation in female philopatry and dispersal. Socioecological theories have tried to explain variation in female-female social relationships from an evolutionary perspective focused on ecological factors, notably predation and food distribution. According to the current ``ecological model'', predation risk forces females of most diurnal primate species to live in groups; the strength of the contest component of competition for resources within and between groups then largely determines social relationships between females. Social elationships among gregarious females are here characterized as DispersalEgalitarian, Resident-Nepotistic, Resident-Nepotistic-Tolerant, or Resident-Egalitarian. This ecological model has successfully explained i€erences in the occurrence of formal submission signals, decided dominance relation ships, coalitions and female philopatry. Group size and female rank generally a€ect female reproduction success as the model predicts, and studies of closely related species in di€erent ecological circumstances underscore the importance of the model. Some cases, however, can only be explained when we extend the model to incorporate the e€ects of infanticide risk and habitat saturation. We review evidence in support of the ecological model and test the power of alternative models that invoke between-group competition, forced female philopatry, demographic female recruitment, male interventions into female aggression, and male harassment.

Not one of these models can replace the ecological model, which already encompasses the between-group competition. Currently the best model, which explains

several phenomena that the ecological model does not, is a ``socioecological model'' based on the combined importance of ecological factors, habitat saturation and infanticide avoidance. We note some points of similarity and divergence with other mammalian taxa; these remain to be explored in detail.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5227  
Permanent link to this record
 

 
Author (up) Watts, D.J.; Strogatz, S.H. url  doi
openurl 
  Title Collective dynamics of /`small-world/' networks Type Journal Article
  Year 1998 Publication Abbreviated Journal Nature  
  Volume 393 Issue 6684 Pages 440-442  
  Keywords  
  Abstract Networks of coupled dynamical systems have been used to model biological oscillators Josephson junction arrays excitable media, neural networks spatial games11, genetic control networks12 and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation). The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes 10.1038/30918 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4989  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print