toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Quaranta, A.; Siniscalchi, M.; Vallortigara, G. url  doi
openurl 
  Title (up) Asymmetric tail-wagging responses by dogs to different emotive stimuli Type Abstract
  Year 2007 Publication Current biology : CB Abbreviated Journal Curr Biol  
  Volume 17 Issue 6 Pages R199-R201  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Cell Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5733  
Permanent link to this record
 

 
Author Versace, E.; Morgante, M.; Pulina, G.; Vallortigara, G. url  doi
openurl 
  Title (up) Behavioural lateralization in sheep (Ovis aries) Type Journal Article
  Year 2007 Publication Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.  
  Volume 184 Issue 1 Pages 72-80  
  Keywords Lateralization; Laterality; Brain asymmetry; Hemisphere; Sheep; Lamb; Strength of lateralization  
  Abstract This study investigates behavioural lateralization in sheep and lambs of different ages. A flock was tested in a task in which the animals were facing an obstacle and should avoid it on either the right or left side to rejoin flock-mates (adult sheep) or their mothers (lambs). A bias for avoiding the obstacle on the right side was observed, with lambs apparently being more lateralized than sheep. This right bias was tentatively associated with the left-hemifield laterality in familiar faces recognition which has been documented in this species. Differences between adult sheep and lambs were likely to be due to differences in social reinstatement motivation elicited by different stimuli (flock-mates or mothers) at different ages. Preferential use of the forelegs to step on a wood-board and direction of jaw movement during rumination was also tested in adult animals. No population bias nor individual-level lateralization was observed for use of the forelegs. At the same time, however, there was a large number of animals showing individual-level lateralization for the direction of jaw movement during rumination even though there was no population bias. These findings highlight that within the same species individual- and population-level lateralization can be observed in different tasks. Moreover, the results fit the general hypothesis that population-level asymmetries are more likely to occur in tasks that require social coordination among behaviourally asymmetric individuals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0166-4328 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6701  
Permanent link to this record
 

 
Author Vallortigara, G.; Chiandetti, C.; Sovrano, V.A. url  doi
openurl 
  Title (up) Brain asymmetry (animal) Type Journal Article
  Year 2011 Publication Wiley Interdisciplinary Reviews: Cognitive Science Abbreviated Journal WIREs Cogn Sci  
  Volume 2 Issue 2 Pages 146-157  
  Keywords  
  Abstract Once considered a uniquely human attribute, brain asymmetry has been proved to be ubiquitous among non-human animals. A synthetic review of evidence of animal lateralization in the motor, sensory, cognitive, and affective domains is provided, together with a discussion of its development and possible biological functions. It is argued that investigation of brain asymmetry in a comparative perspective may favor the link between classical neuropsychological studies and modern developmental and evolutionary biology approaches. WIREs Cogni Sci 2011 2 146–157 DOI: 10.1002/wcs.100 For further resources related to this article, please visit the WIREs website  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Inc. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1939-5086 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5687  
Permanent link to this record
 

 
Author Siniscalchi, M.; Sasso, R.; Pepe, A.M.; Dimatteo, S.; Vallortigara, G.; Quaranta, A. url  doi
openurl 
  Title (up) Catecholamine plasma levels following immune stimulation with rabies vaccine in dogs selected for their paw preferences Type Journal Article
  Year 2010 Publication Neuroscience Letters Abbreviated Journal  
  Volume 476 Issue 3 Pages 142-145  
  Keywords Physiology; Behavior; Lateralization; Catecholamines; Paw preference; Neuro-immune-modulation  
  Abstract Epinephrine and norepinephrine plasma levels were assessed in dogs in relation to paw preference following an immune challenge with rabies vaccine. The results showed that both catecholamines increased after the vaccine administration, confirming the main role of the sympathetic nervous system in the modulation activity between the brain and the immune system. Moreover, ambidextrous dogs showed a significantly higher increase of epinephrine levels 8 days after immunization with respect to right- and left-pawed dogs, suggesting that the biological activity of this molecule could be key for a different immune response with regard to laterality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3940 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5788  
Permanent link to this record
 

 
Author Vallortigara, G.; Regolin, L.; Rigoni, M.; Zanforlin, M. doi  openurl
  Title (up) Delayed search for a concealed imprinted object in the domestic chick Type Journal Article
  Year 1998 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 1 Issue 1 Pages 17-24  
  Keywords  
  Abstract Five-day-old chicks were accustomed to follow an imprinted object (a small red ball with which they had been reared) that was moving slowly in a large arena, until it disappeared behind an opaque screen. In experiments, each chick was initially confined in a transparent cage, from where it could see and track the ball while it moved towards, and then beyond, one of two screens. The screens could be either identical or differ in colour and pattern. Either immediately after the disappearance of the ball, or with a certain delay, the chick was released and allowed to search for its imprinted object behind either screen. The results showed that chicks took into account the directional cue provided by the ball movement and its concealment, up to a delay period of about 180 s, independently of the perceptual characteristics of the two screens. If an opaque partition was positioned in front of the transparent cage immediately after the ball had disappeared, so that, throughout the delay, neither the goal-object nor the two screens were visible, chicks were still capable of remembering and choosing the correct screen, though over a much shorter period of about 60 s. The results suggest that, at least in this precocial bird species, very young chicks can maintain some form of representation of the location where a social partner was last seen, and are also capable of continuously updating this representation so as to take into account successive displacements of the goal-object.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 3347  
Permanent link to this record
 

 
Author Zucca, P.; Antonelli, F.; Vallortigara, G. doi  openurl
  Title (up) Detour behaviour in three species of birds: quails (Coturnix sp.), herring gulls (Larus cachinnans) and canaries (Serinus canaria) Type Journal Article
  Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 2 Pages 122-128  
  Keywords Animals; *Avoidance Learning; *Birds; Canaries; Charadriiformes; Coturnix; *Discrimination Learning; Orientation; *Space Perception; *Spatial Behavior; Species Specificity  
  Abstract Detour behaviour is the ability of an animal to reach a goal stimulus by moving round any interposed obstacle. It has been widely studied and has been proposed as a test of insight learning in several species of mammals, but few data are available in birds. A comparative study in three species of birds, belonging to different eco-ethological niches, allows a better understanding of the cognitive mechanism of such detour behaviour. Young quails (Coturnix sp.), herring gulls (Larus cachinnans) and canaries (Serinus canaria), 1 month old, 10-25 days old and 4-6 months old, respectively, were tested in a detour situation requiring them to abandon a clear view of a biologically interesting object (their own reflection in a mirror) in order to approach that object. Birds were placed in a closed corridor, at one end of which was a barrier through which the object was visible. Four different types of barrier were used: vertical bar, horizontal bar, grid and transparent. Two symmetrical apertures placed midline in the corridor allowed the birds to adopt routes passing around the barrier. After entering the apertures, birds could turn either right or left to re-establish social contact with the object in the absence of any local sensory cues emanating from it. Quails appeared able to solve the task, though their performance depended on the type of barrier used, which appeared to modulate their relative interest in approaching the object or in exploring the surroundings. Young herring gulls also showed excellent abilities to locate spatially the out-of-view object, except when the transparent barrier was used. Canaries, on the other hand, appeared completely unable to solve the detour task, whatever barrier was in use. It is suggested that these species differences can be accounted for in terms of adaptation to a terrestrial or aerial environment.  
  Address Laboratory of Animal Cognition and Comparative Neuroscience, Department of Psychology, University of Trieste, Via S. Anastasio 12, 34100, Trieste, Italy. zucca@units.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15449104 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2506  
Permanent link to this record
 

 
Author Vallortigara, G.; Andrew, R.J. url  doi
openurl 
  Title (up) Differential involvement of right and left hemisphere in individual recognition in the domestic chick Type Journal Article
  Year 1994 Publication Behavioural Processes Abbreviated Journal Behav. Process.  
  Volume 33 Issue 1-2 Pages 41-57  
  Keywords Right hemisphere; Left hemisphere; Domestic fowl; Lateralization; Chick  
  Abstract Right hemisphere advantage in individual recognition (as shown by differences between response to strangers and companions) is clear in the domestic chick. Chicks using the left eye (and so, thanks to the complete optic decussation, predominantly the right hemisphere) discriminate between stranger and companion. Chicks using the right eye discriminate less clearly or not at all. The ability of left eyed chicks to respond to differences between strangers and companions stimuli is associated with a more general ability to detect and respond to novelty: this difference between left and right eyed chicks also holds for stimuli which are not social partners. The right hemisphere also shows advantage in tasks with a spatial component (topographical learning; response to change in the spatial context of a stimulus) in the chick, as in humans. Similar specialisations of the two hemispheres are also revealed in tests which involve olfactory cues presented by social partners. The special properties of the left hemisphere are less well established in the chick. Evidence reviewed here suggests that it tends to respond to selected properties of a stimulus and to use them to assign it to a category; such assignment then allows an appropriate response. When exposed to an imprinting stimulus (visual or auditory) a chick begins by using right eye or ear (suggesting left hemisphere control), and then shifts to the left eye or ear (suggesting right hemisphere control), as exposure continues. The left hemisphere here is thus involved whilst behaviour is dominated by vigorous response to releasing stimuli presented by an object. Subsequent learning about the full detailed properties of the stimulus, which is crucial for individual recognition, may explain the shift to right hemisphere control after prolonged exposure to the social stimulus. There is a marked sex difference in choice tests: females tend to choose companions in tests where males choose strangers. It is possible that this difference is specifically caused by stronger motivation to sustain social contact in female chicks, for which there is extensive evidence. However, sex differences in response to change in familiar stimuli are also marked in tests which do not involve social partners. Finally, in both sexes there are two periods during development in which there age-dependent shifts in bias to use one or other hemisphere. These periods (days 3-5 and 8-11) coincide with two major changes in the social behaviour of chicks reared by a hen in a normal brood. It is argued that one function of these periods is to bring fully into play the hemisphere most appropriate to the type of response to, and learning about, social partners which is needed at particular points in development. Parallels are discussed between the involvement of lateralised processes in the recognition of social partners in chicks and humans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5341  
Permanent link to this record
 

 
Author Siniscalchi, M.; Sasso, R.; Pepe, A.M.; Vallortigara, G.; Quaranta, A. url  doi
openurl 
  Title (up) Dogs turn left to emotional stimuli Type Journal Article
  Year 2010 Publication Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.  
  Volume 208 Issue 2 Pages 516-521  
  Keywords Dog; Laterality; Vision; Behaviour; Physiology; Cognition; Emotion; Animal welfare  
  Abstract During feeding behaviour, dogs were suddenly presented with 2D stimuli depicting the silhouette of a dog, a cat or a snake simultaneously into the left and right visual hemifields. A bias to turn the head towards the left rather than the right side was observed with the cat and snake stimulus but not with the dog stimulus. Latencies to react following stimulus presentation were lower for left than for right head turning, whereas times needed to resume feeding behaviour were higher after left rather than after right head turning. When stimuli were presented only to the left or right visual hemifields, dogs proved to be more responsive to left side presentation, irrespective of the type of stimulus. However, cat and snake stimuli produced shorter latencies to react and longer times to resume feeding following left rather than right monocular visual hemifield presentation. Results demonstrate striking lateralization in dogs, with the right side of the brain more responsive to threatening and alarming stimuli. Possible implications for animal welfare are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0166-4328 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5080  
Permanent link to this record
 

 
Author Regolin, L.; Marconato, F.; Vallortigara, G. doi  openurl
  Title (up) Hemispheric differences in the recognition of partly occluded objects by newly hatched domestic chicks (Gallus gallus) Type Journal Article
  Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 7 Issue 3 Pages 162-170  
  Keywords Animals; Discrimination Learning/physiology; Dominance, Cerebral/*physiology; Female; Form Perception/*physiology; Imprinting (Psychology)/*physiology; Pattern Recognition, Visual/*physiology; Photic Stimulation; Random Allocation; Vision, Monocular/*physiology  
  Abstract Domestic chicks are capable of perceiving as a whole objects partly concealed by occluders (“amodal completion”). In previous studies chicks were imprinted on a certain configuration and at test they were required to choose between two alternative versions of it. Using the same paradigm we now investigated the presence of hemispheric differences in amodal completion by testing newborn chicks with one eye temporarily patched. Separate groups of newly hatched chicks were imprinted binocularly: (1) on a square partly occluded by a superimposed bar, (2) on a whole or (3) on an amputated version of the square. At test, in monocular conditions, each chick was presented with a free choice between a complete and an amputated square. In the crucial condition 1, chicks tested with only their left eye in use chose the complete square (like binocular chicks would do); right-eyed chicks, in contrast, tended to choose the amputated square. Similar results were obtained in another group of chicks imprinted binocularly onto a cross (either occluded or amputated in its central part) and required to choose between a complete or an amputated cross. Left-eyed and binocular chicks chose the complete cross, whereas right-eyed chicks did not choose the amputated cross significantly more often. These findings suggest that neural structures fed by the left eye (mainly located in the right hemisphere) are, in the chick, more inclined to a “global” analysis of visual scenes, whereas those fed by the right eye seem to be more inclined to a “featural” analysis of visual scenes.  
  Address Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy. lucia.regolin@unipd.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15241654 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2519  
Permanent link to this record
 

 
Author Sovrano, V.A.; Bisazza, A.; Vallortigara, G. doi  openurl
  Title (up) How fish do geometry in large and in small spaces Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 1 Pages 47-54  
  Keywords Animals; *Association Learning; Color Perception; Cues; *Discrimination Learning; *Distance Perception; *Fishes; Male; Pattern Recognition, Visual; Social Environment; *Space Perception; Visual Perception  
  Abstract It has been shown that children and non-human animals seem to integrate geometric and featural information to different extents in order to reorient themselves in environments of different spatial scales. We trained fish (redtail splitfins, Xenotoca eiseni) to reorient to find a corner in a rectangular tank with a distinctive featural cue (a blue wall). Then we tested fish after displacement of the feature on another adjacent wall. In the large enclosure, fish chose the two corners with the feature, and also tended to choose among them the one that maintained the correct arrangement of the featural cue with respect to geometric sense (i.e. left-right position). In contrast, in the small enclosure, fish chose both the two corners with the features and the corner, without any feature, that maintained the correct metric arrangement of the walls with respect to geometric sense. Possible reasons for species differences in the use of geometric and non-geometric information are discussed.  
  Address Department of General Psychology, University of Padua, Via Venezia, 8, 35131, Padova, Italy. valeriaanna.sovrano@unipd.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16794851 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2462  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print