toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Chiandetti, C.; Regolin, L.; Sovrano, V.A.; Vallortigara, G. doi  openurl
  Title Spatial reorientation: the effects of space size on the encoding of landmark and geometry information Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 2 Pages 159-168  
  Keywords Animals; Chickens/*physiology; *Feeding Behavior; Male; Orientation/*physiology; Pattern Recognition, Visual/*physiology; *Space Perception  
  Abstract The effects of the size of the environment on animals' spatial reorientation was investigated. Domestic chicks were trained to find food in a corner of either a small or a large rectangular enclosure. A distinctive panel was located at each of the four corners of the enclosures. After removal of the panels, chicks tested in the small enclosure showed better retention of geometrical information than chicks tested in the large enclosure. In contrast, after changing the enclosure from a rectangular-shaped to a square-shaped one, chicks tested in the large enclosure showed better retention of landmark (panels) information than chicks tested in the small enclosure. No differences in the encoding of the overall arrangement of landmarks were apparent when chicks were tested for generalisation in an enclosure differing from that of training in size together with a transformation (affine transformation) that altered the geometric relations between the target and the shape of the environment. These findings suggest that primacy of geometric or landmark information in reorientation tasks depends on the size of the experimental space, likely reflecting a preferential use of the most reliable source of information available during visual exploration of the environment.  
  Address Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, Via S. Anastasio 12, 34123, Trieste, Italy. cchiandetti@univ.trieste.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17136416 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2433  
Permanent link to this record
 

 
Author (up) Chiesa, A.D.; Pecchia, T.; Tommasi, L.; Vallortigara, G. doi  openurl
  Title Multiple landmarks, the encoding of environmental geometry and the spatial logics of a dual brain Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 281-293  
  Keywords Animals; Association Learning/*physiology; Chickens; *Cues; Dominance, Cerebral/*physiology; *Environment; Exploratory Behavior/*physiology; Logic; Space Perception/*physiology; Spatial Behavior/physiology  
  Abstract A series of place learning experiments was carried out in young chicks (Gallus gallus) in order to investigate how the geometry of a landmark array and that of a walled enclosure compete when disoriented animals could rely on both of them to re-orient towards the centre of the enclosure. A square-shaped array (four wooden sticks) was placed in the middle of a square-shaped enclosure, the two structures being concentric. Chicks were trained to ground-scratch to search for food hidden in the centre of the enclosure (and the array). To check for effects of array degradation, one, two, three or all landmarks were removed during test trials. Chicks concentrated their searching activity in the central area of the enclosure, but their accuracy was inversely contingent on the number of landmarks removed; moreover, the landmarks still present within the enclosure appeared to influence the shape of the searching patterns. The reduction in the number of landmarks affected the searching strategy of chicks, suggesting that they had focussed mainly on local cues when landmarks were present within the enclosure. When all the landmarks were removed, chicks searched over a larger area, suggesting an absolute encoding of distances from the local cues and less reliance on the relationships provided by the geometry of the enclosure. Under conditions of monocular vision, chicks tended to rely on different strategies to localize the centre on the basis of the eye (and thus the hemisphere) in use, the left hemisphere attending to details of the environment and the right hemisphere attending to the global shape.  
  Address Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, via S. Anastasio 12, 34100, Trieste, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16941155 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2443  
Permanent link to this record
 

 
Author (up) Clara, E.; Regolin, L.; Vallortigara, G.; Rogers, L. doi  openurl
  Title Perception of the stereokinetic illusion by the common marmoset (Callithrix jacchus) Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 2 Pages 135-140  
  Keywords Animals; Behavior, Animal/*physiology; Callithrix/*physiology; Female; Male; *Optical Illusions; Pattern Recognition, Visual/*physiology  
  Abstract Stereokinetic illusions have never been investigated in non-human primates, nor in other mammalian species. These illusions consist in the perception of a 3D solid object when certain 2D stimuli are rotated slowly in the plane perpendicular to the line of sight. The ability to perceive the stereokinetic illusion was investigated in the common marmoset (Callithrix jacchus). Four adult marmosets were trained to discriminate between a solid cylinder and a solid cone for food reward. Once learning criterion was reached, the marmosets were tested in sets of eight probe trials in which the two solid objects used at training were replaced by two rotating 2D stimuli. Only one of these stimuli produced, at least to the human observer, the stereokinetic illusion corresponding to the solid object previously reinforced. At test, the general behaviour and the total time spent by the marmosets observing each stimulus were recorded. The subjects stayed longer near the stimulus producing the stereokinetic illusion corresponding to the solid object reinforced at training than they did near the illusion corresponding to the previously non-rewarded stimulus. Hence, the common marmosets behaved as if they could perceive stereokinetic illusions.  
  Address Centre for Neuroscience and Animal Behaviour, University of New England, Armidale, NSW, 2351, Australia. elena.clara@unipd.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16924457 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2445  
Permanent link to this record
 

 
Author (up) Ghirlanda, S.; Frasnelli, E.; Vallortigara, G. url  doi
openurl 
  Title Intraspecific competition and coordination in the evolution of lateralization Type Journal Article
  Year 2009 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 364 Issue 1519 Pages 861-866  
  Keywords  
  Abstract Recent studies have revealed a variety of left–right asymmetries among vertebrates and invertebrates. In many species, left- and right-lateralized individuals coexist, but in unequal numbers (‘population-level’ lateralization). It has been argued that brain lateralization increases individual efficiency (e.g. avoiding unnecessary duplication of neural circuitry and reducing interference between functions), thus counteracting the ecological disadvantages of lateral biases in behaviour (making individual behaviour more predictable to other organisms). However, individual efficiency does not require a definite proportion of left- and right-lateralized individuals. Thus, such arguments do not explain population-level lateralization. We have previously shown that, in the context of prey–predator interactions, population-level lateralization can arise as an evolutionarily stable strategy when individually asymmetrical organisms must coordinate their behaviour with that of other asymmetrical organisms. Here, we extend our model showing that populations consisting of left- and right-lateralized individuals in unequal numbers can be evolutionarily stable, based solely on strategic factors arising from the balance between antagonistic (competitive) and synergistic (cooperative) interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5346  
Permanent link to this record
 

 
Author (up) Ghirlanda, S.; Vallortigara, G. url  doi
openurl 
  Title The evolution of brain lateralization: a game-theoretical analysis of population structure Type Journal Article
  Year 2004 Publication Proceedings of the Royal Society of London. Series B: Biological Sciences Abbreviated Journal  
  Volume 271 Issue 1541 Pages 853-857  
  Keywords  
  Abstract In recent years, it has become apparent that behavioural and brain lateralization at the population level is the rule rather than the exception among vertebrates. The study of these phenomena has so far been the province of neurology and neuropsychology. Here, we show how such research can be integrated with evolutionary biology to understand lateralization more fully. In particular, we address the fact that, within a species, left– and right–type individuals often occur in proportions different from one–half (e.g. hand use in humans). The traditional explanations offered for lateralization of brain function (that it may avoid unnecessary duplication of neural circuitry and reduce interference between functions) cannot account for this fact, because increased individual efficiency is unrelated to the alignment of lateralization at the population level. A further puzzle is that such an alignment may even be disadvantageous, as it makes individual behaviour more predictable to other organisms. Here, we show that alignment of the direction of behavioural asymmetries in a population can arise as an evolutionarily stable strategy when individual asymmetrical organisms must coordinate their behaviour with that of other asymmetrical organisms. Brain and behavioural lateralization, as we know it in humans and other vertebrates, may have evolved under basically ‘social’ selection pressures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5345  
Permanent link to this record
 

 
Author (up) Quaranta, A.; Siniscalchi, M.; Frate, A.; Vallortigara, G. url  doi
openurl 
  Title Paw preference in dogs: relations between lateralised behaviour and immunity Type Journal Article
  Year 2004 Publication Behavioural Brain Research Abbreviated Journal  
  Volume 153 Issue 2 Pages 521-525  
  Keywords Paw preference; Lateralisation; Immunity; Dog  
  Abstract Paw use in a task consisting of the removal of a piece of adhesive paper from the snout was investigated in 80 mongrel and pure-bred domestic dogs (Canis familiaris). Population lateralisation was observed, but in opposite directions in the two sexes (animals were not desexed): males preferentially used their left paw, females their right paw. The relationship between immune function and paw preference was then investigated. Some immune parameters (total number of white blood cells including lymphocytes, granulocytes and monocytes; leukocyte formula; total proteins; γ-globulins) were investigated in a sample of left-pawed (n=6), right-pawed (n=6) and ambidextrous (n=6) dogs. The results showed that the percentage of lymphocytes was higher in left-pawed than in right-pawed and ambidextrous dogs, whereas granulocytes percentage was lower in left-pawed than in right-pawed and ambidextrous dogs. Moreover, total number of lymphocytes cells was higher in left-pawed than in right-pawed and ambidextrous dogs, whereas the number of γ-globulins was lower in left-pawed than in right-pawed and ambidextrous dogs. These findings represent the first evidence that brain asymmetry modulates immune responses in dogs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0166-4328 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5783  
Permanent link to this record
 

 
Author (up) Quaranta, A.; Siniscalchi, M.; Vallortigara, G. url  doi
openurl 
  Title Asymmetric tail-wagging responses by dogs to different emotive stimuli Type Abstract
  Year 2007 Publication Current biology : CB Abbreviated Journal Curr Biol  
  Volume 17 Issue 6 Pages R199-R201  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Cell Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5733  
Permanent link to this record
 

 
Author (up) Quaresmini, C.; Forrester, G.S.; Spiezio, C.; Vallortigara, G. doi  openurl
  Title Social environment elicits lateralized behaviors in gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes) Type Journal Article
  Year 2014 Publication Journal of Comparative Psychology Abbreviated Journal  
  Volume 128 Issue 3 Pages 276-284  
  Keywords *Animal Ethology; *Animal Social Behavior; *Chimpanzees; *Gorillas; *Social Influences; Cerebral Dominance; Lateral Dominance; Social Environments  
  Abstract The influence of the social environment on lateralized behaviors has now been investigated across a wide variety of animal species. New evidence suggests that the social environment can modulate behavior. Currently, there is a paucity of data relating to how primates navigate their environmental space, and investigations that consider the naturalistic context of the individual are few and fragmented. Moreover, there are competing theories about whether only the right or rather both cerebral hemispheres are involved in the processing of social stimuli, especially in emotion processing. Here we provide the first report of lateralized social behaviors elicited by great apes. We employed a continuous focal animal sampling method to record the spontaneous interactions of a captive zoo-living colony of chimpanzees (Pan troglodytes) and a biological family group of peer-reared western lowland gorillas (Gorilla gorilla gorilla). We specifically focused on which side of the body (i.e., front, rear, left, right) the focal individual preferred to keep conspecifics. Utilizing a newly developed quantitative corpus-coding scheme, analysis revealed both chimpanzees and gorillas demonstrated a significant group-level preference for focal individuals to keep conspecifics positioned to the front of them compared with behind them. More interestingly, both groups also manifested a population-level bias to keep conspecifics on their left side compared with their right side. Our findings suggest a social processing dominance of the right hemisphere for context-specific social environments. Results are discussed in light of the evolutionary adaptive value of social stimulus as a triggering factor for the manifestation of group-level lateralized behaviors. (PsycINFO Database Record (c) 2016 APA, all rights reserved)  
  Address Quaresmini, Caterina: Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini 31, Rovereto, Italy, 38068, caterina.quaresmini@gmail.com  
  Corporate Author Thesis  
  Publisher American Psychological Association Place of Publication Us Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1939-2087(Electronic),0735-7036(Print) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ 2014-13828-001 Serial 6396  
Permanent link to this record
 

 
Author (up) Regolin, L.; Marconato, F.; Vallortigara, G. doi  openurl
  Title Hemispheric differences in the recognition of partly occluded objects by newly hatched domestic chicks (Gallus gallus) Type Journal Article
  Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 7 Issue 3 Pages 162-170  
  Keywords Animals; Discrimination Learning/physiology; Dominance, Cerebral/*physiology; Female; Form Perception/*physiology; Imprinting (Psychology)/*physiology; Pattern Recognition, Visual/*physiology; Photic Stimulation; Random Allocation; Vision, Monocular/*physiology  
  Abstract Domestic chicks are capable of perceiving as a whole objects partly concealed by occluders (“amodal completion”). In previous studies chicks were imprinted on a certain configuration and at test they were required to choose between two alternative versions of it. Using the same paradigm we now investigated the presence of hemispheric differences in amodal completion by testing newborn chicks with one eye temporarily patched. Separate groups of newly hatched chicks were imprinted binocularly: (1) on a square partly occluded by a superimposed bar, (2) on a whole or (3) on an amputated version of the square. At test, in monocular conditions, each chick was presented with a free choice between a complete and an amputated square. In the crucial condition 1, chicks tested with only their left eye in use chose the complete square (like binocular chicks would do); right-eyed chicks, in contrast, tended to choose the amputated square. Similar results were obtained in another group of chicks imprinted binocularly onto a cross (either occluded or amputated in its central part) and required to choose between a complete or an amputated cross. Left-eyed and binocular chicks chose the complete cross, whereas right-eyed chicks did not choose the amputated cross significantly more often. These findings suggest that neural structures fed by the left eye (mainly located in the right hemisphere) are, in the chick, more inclined to a “global” analysis of visual scenes, whereas those fed by the right eye seem to be more inclined to a “featural” analysis of visual scenes.  
  Address Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy. lucia.regolin@unipd.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15241654 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2519  
Permanent link to this record
 

 
Author (up) Regolin, L.; Tommasi, L.; Vallortigara, G. doi  openurl
  Title Visual perception of biological motion in newly hatched chicks as revealed by an imprinting procedure Type Journal Article
  Year 2000 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 3 Issue 1 Pages 53-60  
  Keywords  
  Abstract Day-old chicks were exposed to point-light animation sequences depicting either a walking hen or a rotating cylinder. On a subsequent free-choice test (experiment 1) the chicks approached the novel stimulus, irrespective of this being the hen or the cylinder. In order to obtain equivalent local motion vectors, in experiments 2 and 3 newly hatched chicks were exposed either to a point-light animation sequence depicting a walking hen, or to a positionally scrambled walking hen (i.e. an animation in which exactly the same set of dots in motion as that employed for the walking hen was presented, but with spatially randomized starting positions). Chicks tested on day 1 (experiment 2) or on day 2 (i.e. after a period in the dark following exposure on day 1 (experiment 3)) proved able to discriminate the two animation sequences: males preferentially approached the novel stimulus, females the familiar one. These results indicate that discrimination was not based on local motion vectors, but rather on the temporally integrated motion sequence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 3314  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print