|   | 
Details
   web
Records
Author (up) Palme, R.; Rettenbacher, S.; Touma, C.; El-Bahr, S.M.; Mostl, E.
Title Stress hormones in mammals and birds: comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples Type Journal Article
Year 2005 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci
Volume 1040 Issue Pages 162-171
Keywords Adrenal Glands/chemistry/metabolism; Animals; Birds; Catecholamines/analysis/chemistry/*metabolism; Feces/*chemistry; Glucocorticoids/analysis/chemistry/*metabolism; Hormones/analysis/metabolism; Mammals; Species Specificity; Stress/*metabolism
Abstract A multitude of endocrine mechanisms are involved in coping with challenges. Front-line hormones to overcome stressful situations are glucocorticoids (GCs) and catecholamines (CAs). These hormones are usually determined in plasma samples as parameters of adrenal activity and thus of disturbance. GCs (and CAs) are extensively metabolized and excreted afterwards. Therefore, the concentration of GCs (or their metabolites) can be measured in various body fluids or excreta. Above all, fecal samples offer the advantages of easy collection and a feedback-free sampling procedure. However, large differences exist among species regarding the route and time course of excretion, as well as the types of metabolites formed. Based on information gained from radiometabolism studies (reviewed in this paper), we recently developed and successfully validated different enzyme immunoassays that enable the noninvasive measurement of groups of cortisol or corticosterone metabolites in animal feces. The determination of these metabolites in fecal samples can be used as a powerful tool to monitor GC production in various species of domestic, wildlife, and laboratory animals.
Address Institute of Biochemistry, Department of Natural Sciences, University of Veterinary Medicine, Vienna, Austria. rupert.palme@vu-wien.ac.at
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923 ISBN Medium
Area Expedition Conference
Notes PMID:15891021 Approved no
Call Number Equine Behaviour @ team @ Serial 4083
Permanent link to this record
 

 
Author (up) Palme, R.; Touma, C.; Arias, N., Dominchin, M.N.; Lepschy, M.
Title Steroid extraction: Get the best out of faecal samples Type Journal Article
Year 2013 Publication Wiener Tierärztliche Wochenschriften Abbreviated Journal Wien Tierärztl Monat – Vet Med Austria
Volume 100 Issue Pages 238-246.
Keywords Review, faeces, extraction, non-invasive hormone monitoring, stress, reproduction.
Abstract Faecal steroid hormone metabolites are becoming increasingly popular as parameters for reproductive functions and stress. The extraction of the steroids from the faecal matrix represents the initial step before quantification can be performed. The steroid metabolites present in the faecal matrix are of varying polarity and composition, so selection of a proper extraction procedure is essential. There have been some studies to address this complex but often neglected point. Radiolabelled steroids (e.g. cortisol or progesterone) have frequently been added to faecal samples to estimate the efficiency of the extraction procedures used. However, native, unmetabolized steroids are normally not present in the faeces and therefore the results are artifi- cial and do not accurately reflect the actual recoveries of the substances of interest. In this respect, recovery experiments based on faecal samples from radiometabolism studies are more informative. In these samples, the metabolite content accurately reflects the mixture of metabolites present in the given species. As a result, it is possible to evaluate different extraction methods for use with faecal samples. We present studies on sheep, horses, pigs, hares and dogs that utilized samples containing naturally metabolized, 14C-labelled steroids. We recommend extracting faecal steroids by simply suspending the faeces in a high percentage of a primary alcohol (for glucocorticoid metabolites 80% aqueous methanol proved best suited for virtually all mammalian species tested so far). Not only does the procedure significantly increase the total amount of recovered radioactivity, it also increases the percentage of unconjugated metabolites, which are more likely to be recognized by the antibodies used in various immunoassays. The advantages of this extraction procedure are clear: it is very easy to use (no evaporation step is needed), it yields high recoveries and variation based on the extraction procedure is reduced to a minimum.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6520
Permanent link to this record
 

 
Author (up) Palme, R.; Touma, C.; Arias,N.; Dominchin, M.F.; Lepschy, M.
Title Steroid extraction: Get the best out of faecal samples Type Journal Article
Year 2012 Publication Veterinary Medicine Austria Abbreviated Journal Vet. Med. Austria
Volume 100 Issue Pages 238-246
Keywords
Abstract Faecal steroid hormone metabolites are becoming increasingly popular as parameters for reproductive functions and stress. Theextraction of the steroids from the faecal matrix represents the initial step before quantification can be performed. The steroid metabolites present in the faecal matrix are of varying polarity and composition, so selection of a proper extraction procedure is essential. There have been some studies to address this complex but often neglected point. Radiolabelled

steroids (e.g. cortisol or progesterone) have frequently been added to faecal samples to estimate the efficiency of the extraction procedures used. However, native, unmetabolized steroids are normally not present in the faeces and therefore the results are artificial and do not accurately reflect the actual recoveries of the substances of interest. In this respect, recovery experiments based on faecal samples from radiometabolism studies are more informative. In these samples, the metabolite content accurately reflects the mixture of metabolites present in the given species. As a result, it is possible to evaluate different extraction methods for use with faecal samples. We present studies on sheep, horses, pigs, hares and dogs that utilized samples containing naturally metabolized, 14C-labelled steroids.
Address Review, faeces, extrac- tion, non-invasive hormone moni- toring, stress, reproduction.
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6046
Permanent link to this record
 

 
Author (up) Touma, C.; Palme, R.
Title Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation Type Journal Article
Year 2005 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci
Volume 1046 Issue Pages 54-74
Keywords Animals; Birds/*metabolism; Circadian Rhythm; Feces/*chemistry; Glucocorticoids/*analysis; Mammals/*metabolism; Reproducibility of Results; Seasons; Sex Factors
Abstract In recent years, the noninvasive monitoring of steroid hormone metabolites in feces of mammals and droppings of birds has become an increasingly popular technique. It offers several advantages and has been applied to a variety of species under various settings. However, using this technique to reliably assess an animal's adrenocortical activity is not that simple and straightforward to apply. Because clear differences regarding the metabolism and excretion of glucocorticoid metabolites (GCMs) exist, a careful validation for each species and sex investigated is obligatory. In this review, general analytical issues regarding sample storage, extraction procedures, and immunoassays are briefly discussed, but the main focus lies on experiments and recommendations addressing the validation of fecal GCM measurements in mammals and birds. The crucial importance of scrutinizing the physiological and biological validity of fecal GCM analyses in a given species is stressed. In particular, the relevance of the technique to detect biologically meaningful alterations in adrenocortical activity must be shown. Furthermore, significant effects of the animals' sex, the time of day, season, and different life history stages are discussed, bringing about the necessity to seriously consider possible sex differences as well as diurnal and seasonal variations. Thus, comprehensive information on the animals' biology and stress physiology should be carefully taken into account. Together with an extensive physiological and biological validation, this will ensure that the measurement of fecal GCMs can be used as a powerful tool to assess adrenocortical activity in diverse investigations on laboratory, companion, farm, zoo, and wild animals.
Address Max Planck Institute of Psychiatry, Department of Behavioral Neuroendocrinology, Kraepelinstrasse 2-10, D-80804 Munich, Germany. touma@mpipsykl.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923 ISBN Medium
Area Expedition Conference
Notes PMID:16055843 Approved no
Call Number Equine Behaviour @ team @ Serial 4073
Permanent link to this record
 

 
Author (up) Touma, C.; Palme, R.; Sachser, N.
Title Analyzing corticosterone metabolites in fecal samples of mice: a noninvasive technique to monitor stress hormones Type Journal Article
Year 2004 Publication Hormones and Behavior Abbreviated Journal Horm Behav
Volume 45 Issue 1 Pages 10-22
Keywords Adrenal Cortex/drug effects; Adrenal Cortex Function Tests; Adrenocorticotropic Hormone/pharmacology; Analysis of Variance; Animals; Circadian Rhythm; Corticosterone/*analysis/metabolism; Dexamethasone/pharmacology; Feces/*chemistry; Female; Immunoenzyme Techniques/*methods; Male; Mice; Mice, Inbred C57BL; Models, Animal; Reproducibility of Results; Stress, Psychological/*metabolism
Abstract In small animals like mice, the monitoring of endocrine functions over time is constrained seriously by the adverse effects of blood sampling. Therefore, noninvasive techniques to monitor, for example, stress hormones in these animals are highly demanded in laboratory as well as in field research. The aim of our study was to evaluate the biological relevance of a recently developed technique to monitor stress hormone metabolites in fecal samples of laboratory mice. In total, six experiments were performed using six male and six female mice each. Two adrenocorticotropic hormone (ACTH) challenge tests, two dexamethasone (Dex) suppression tests and two control experiments [investigating effects of the injection procedure itself and the diurnal variation (DV) of glucocorticoids (GCs), respectively] were conducted. The experiments clearly demonstrated that pharmacological stimulation and suppression of adrenocortical activity was reflected accurately by means of corticosterone metabolite (CM) measurements in the feces of males and females. Furthermore, the technique proved sensitive enough to detect dosage-dependent effects of the ACTH/Dex treatment and facilitated to reveal profound effects of the injection procedure itself. Even the naturally occurring DV of GCs could be monitored reliably. Thus, our results confirm that measurement of fecal CM with the recently established 5alpha-pregnane-3beta,11beta,21-triol-20-one enzyme immunoassay is a very powerful tool to monitor adrenocortical activity in laboratory mice. Since mice represent the vast majority of all rodents used for research worldwide and the number of transgenic and knockout mice utilized as animal models is still increasing, this noninvasive technique can open new perspectives in biomedical and behavioral science.
Address Department of Behavioural Biology, University of Muenster, D-48149 Muenster, Germany. touma@uni-muenster.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-506X ISBN Medium
Area Expedition Conference
Notes PMID:14733887 Approved no
Call Number Equine Behaviour @ team @ Serial 4084
Permanent link to this record
 

 
Author (up) Touma, C.; Sachser, N.; Mostl, E.; Palme, R.
Title Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice Type Journal Article
Year 2003 Publication General and Comparative Endocrinology Abbreviated Journal Gen Comp Endocrinol
Volume 130 Issue 3 Pages 267-278
Keywords Animals; Chromatography, High Pressure Liquid; Circadian Rhythm/*physiology; Corticosterone/*metabolism/urine; Feces/*chemistry; Female; Immunoenzyme Techniques; Kinetics; Male; Mice; Mice, Inbred C57BL; Reference Values; Sex Factors; Stress/metabolism; Time Factors; Tritium
Abstract Non-invasive techniques to monitor stress hormones in small animals like mice offer several advantages and are highly demanded in laboratory as well as in field research. Since knowledge about the species-specific metabolism and excretion of glucocorticoids is essential to develop such a technique, we conducted radiometabolism studies in mice (Mus musculus f. domesticus, strain C57BL/6J). Each mouse was injected intraperitoneally with 740 kBq of 3H-labelled corticosterone and all voided urine and fecal samples were collected for five days. In a first experiment 16 animals (eight of each sex) received the injection at 9 a.m., while eight mice (four of each sex) were injected at 9 p.m. in a second experiment. In both experiments radioactive metabolites were recovered predominantly in the feces, although males excreted significantly higher proportions via the feces (about 73%) than females (about 53%). Peak radioactivity in the urine was detected within about 2h after injection, while in the feces peak concentrations were observed later (depending on the time of injection: about 10h postinjection in experiment 1 and about 4h postinjection in experiment 2, thus proving an effect of the time of day). The number and relative abundance of fecal [3H]corticosterone metabolites was determined by high performance liquid chromatography (HPLC). The HPLC separations revealed that corticosterone was extensively metabolized mainly to more polar substances. Regarding the types of metabolites formed, significant differences were found between males and females, but not between the experiments. Additionally, the immunoreactivity of these metabolites was assessed by screening the HPLC fractions with four enzyme immunoassays (EIA). However, only a newly established EIA for 5alpha-pregnane-3beta,11beta,21-triol-20-one (measuring corticosterone metabolites with a 5alpha-3beta,11beta-diol structure) detected several peaks of radioactive metabolites with high intensity in both sexes, while the other EIAs showed only minor immunoreactivity. Thus, our study for the first time provides substantial information about metabolism and excretion of corticosterone in urine and feces of mice and is the first demonstrating a significant impact of the animals' sex and the time of day. Based on these data it should be possible to monitor adrenocortical activity non-invasively in this species by measuring fecal corticosterone metabolites with the newly developed EIA. Since mice are extensively used in research world-wide, this could open new perspectives in various fields from ecology to behavioral endocrinology.
Address Department of Behavioral Biology, Institute of Neuro and Behavioral Biology, University of Muenster, Badestrasse 9, D-48149 Muenster, Germany. touma@uni-muenster.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6480 ISBN Medium
Area Expedition Conference
Notes PMID:12606269 Approved no
Call Number Equine Behaviour @ team @ Serial 4086
Permanent link to this record