|   | 
Details
   web
Record
Author (up) Watts, D.J.; Strogatz, S.H.
Title Collective dynamics of /`small-world/' networks Type Journal Article
Year 1998 Publication Abbreviated Journal Nature
Volume 393 Issue 6684 Pages 440-442
Keywords
Abstract Networks of coupled dynamical systems have been used to model biological oscillators Josephson junction arrays excitable media, neural networks spatial games11, genetic control networks12 and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation). The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes 10.1038/30918 Approved no
Call Number Equine Behaviour @ team @ Serial 4989
Permanent link to this record