|   | 
Details
   web
Records
Author Jones, J.E.; Antoniadis, E.; Shettleworth, S.J.; Kamil, A.C.
Title (up) A comparative study of geometric rule learning by nutcrackers (Nucifraga columbiana), pigeons (Columba livia), and jackdaws (Corvus monedula) Type Journal Article
Year 2002 Publication Journal of comparative psychology (Washington, D.C. : 1983) Abbreviated Journal J Comp Psychol
Volume 116 Issue 4 Pages 350-356
Keywords Animals; Behavior, Animal/physiology; Birds; Feeding Behavior/physiology; Learning/*physiology; *Mathematics; Random Allocation; Spatial Behavior/*physiology
Abstract Three avian species, a seed-caching corvid (Clark's nutcrackers; Nucifraga columbiana), a non-seed-caching corvid (jackdaws; Corvus monedula), and a non-seed-caching columbid (pigeons; Columba livia), were tested for ability to learn to find a goal halfway between 2 landmarks when distance between the landmarks varied during training. All 3 species learned, but jackdaws took much longer than either pigeons or nutcrackers. The nutcrackers searched more accurately than either pigeons or jackdaws. Both nutcrackers and pigeons showed good transfer to novel landmark arrays in which interlandmark distances were novel, but inconclusive results were obtained from jackdaws. Species differences in this spatial task appear quantitative rather than qualitative and are associated with differences in natural history rather than phylogeny.
Address School of Biological Sciences, University of Nebraska-Lincoln, 68588-0118, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7036 ISBN Medium
Area Expedition Conference
Notes PMID:12539930 Approved no
Call Number refbase @ user @ Serial 369
Permanent link to this record
 

 
Author Nevin, J.A.; Shettleworth, S.J.
Title (up) An analysis of contrast effects in multiple schedules Type Journal Article
Year 1966 Publication Journal of the experimental analysis of behavior Abbreviated Journal J Exp Anal Behav
Volume 9 Issue 4 Pages 305-315
Keywords Animals; Birds; *Conditioning (Psychology); Conditioning, Operant; Discrimination Learning; *Extinction, Psychological; Male; Reaction Time; *Reinforcement (Psychology)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-5002 ISBN Medium
Area Expedition Conference
Notes PMID:5961499 Approved no
Call Number refbase @ user @ Serial 392
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title (up) Animal behaviour: planning for breakfast Type Journal Article
Year 2007 Publication Nature Abbreviated Journal Nature
Volume 445 Issue 7130 Pages 825-826
Keywords Animals; Feeding Behavior/*physiology; *Food; Haplorhini/physiology; Memory/physiology; Songbirds/*physiology; Thinking/*physiology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:17314961 Approved no
Call Number refbase @ user @ Serial 356
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title (up) Animal cognition and animal behaviour Type Journal Article
Year 2001 Publication Animal Behaviour. Abbreviated Journal Anim. Behav.
Volume 61 Issue 2 Pages 277-286
Keywords
Abstract Cognitive processes such as perception, learning, memory and decision making play an important role in mate choice, foraging and many other behaviours. In this review, I summarize a few key ideas about animal cognition developed in a recent book (Shettleworth 1998, Cognition, Evolution and Behaviour) and briefly review some areas in which interdisciplinary research on animal cognition is currently proving especially productive. Cognition, broadly defined, includes all ways in which animals take in information through the senses, process, retain and decide to act on it. Studying animal cognition does not entail any particular position on whether or to what degree animals are conscious. Neither does it entail rejecting behaviourism in that one of the greatest challenges in studing animal cognition is to formulate clear behavioural criteria for inferring specific mental processes. Tests of whether or not apparently goal-directed behaviour is controlled by a representation of its goal, episodic-like memory in birds, and deceptive behaviour in monkeys provide examples. Functional modelling has been integrated with analyses of cognitive mechanisms in a number of areas, including studies of communication, models of how predator learning and attention affect the evolution of conspicuous and cryptic prey, tests of the relationship betweeen ecological demands on spatial cognition and brain evolution, and in research on social learning. Rather than a `new field' of cognitive ecology, such interdisciplinary research on animal cognition exemplifies a revival of interest in proximate mechanisms of behaviour.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 397
Permanent link to this record
 

 
Author Anderson , M.C.; Shettleworth, S.J.
Title (up) Behavioral adaptation to fixed-interval and fixed-time food delivery in golden hamsters Type Journal Article
Year 1977 Publication Journal of the Experimental Analysis of Behavior (JEAB) Abbreviated Journal J Exp Anal Behav
Volume 27 Issue 1 Pages 33-49
Keywords
Abstract Food-deprived golden hamsters in a large enclosure received food every 30 sec contingent on lever pressing, or free while their behavior was continuously recorded in terms of an exhaustive classification of motor patterns. As with other species in other situations, behavior became organized into two main classes. One (terminal behaviors) increased in probability throughout interfood intervals; the other (interim behaviors) peaked earlier in interfood intervals. Which class an activity belonged to was independent of whether food was contingent on lever pressing. When food was omitted on some of the intervals (thwarting), the terminal activities began sooner in the next interval, and different interim activities changed in different ways. The interim activities did not appear to be schedule-induced in the usual sense. Rather, the hamsters left the area of the feeder when food was not due and engaged in activities they would normally perform in the experimental environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-5002 ISBN Medium
Area Expedition Conference
Notes PMID:16811980 Approved no
Call Number refbase @ user @ Serial 388
Permanent link to this record
 

 
Author Ratcliffe, J.M.; Fenton, M.B.; Shettleworth, S.J.
Title (up) Behavioral flexibility positively correlated with relative brain volume in predatory bats Type Journal Article
Year 2006 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol
Volume 67 Issue 3 Pages 165-176
Keywords Adaptation, Psychological; Animals; Behavior, Animal/*physiology; Brain/*anatomy & histology/physiology; Chiroptera/*anatomy & histology/*physiology; Organ Size; Predatory Behavior/*physiology
Abstract We investigated the potential relationships between foraging strategies and relative brain and brain region volumes in predatory (animal-eating) echolocating bats. The species we considered represent the ancestral state for the order and approximately 70% of living bat species. The two dominant foraging strategies used by echolocating predatory bats are substrate-gleaning (taking prey from surfaces) and aerial hawking (taking airborne prey). We used species-specific behavioral, morphological, and ecological data to classify each of 59 predatory species as one of the following: (1) ground gleaning, (2) behaviorally flexible (i.e., known to both glean and hawk prey), (3) clutter tolerant aerial hawking, or (4) open-space aerial hawking. In analyses using both species level data and phylogenetically independent contrasts, relative brain size was larger in behaviorally flexible species. Further, relative neocortex volume was significantly reduced in bats that aerially hawk prey primarily in open spaces. Conversely, our foraging behavior index did not account for variability in hippocampus and inferior colliculus volume and we discuss these results in the context of past research.
Address Department of Zoology, University of Toronto, Toronto, Canada. jmr247@cornell.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:16415571 Approved no
Call Number refbase @ user @ Serial 358
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title (up) Cognition, Evolution and Behaviour Type Book Whole
Year 1998 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Description

How do animals perceive the world, learn, remember, search for food or mates, and find their way around? Do any non-human animals count, imitate one another, use a language, or think as we do? What use is cognition in nature and how might it have evolved? Historically, research on such questions has been fragmented between psychology, where the emphasis has been on theoretical models and lab experiments, and biology, where studies focus on evolution and the adaptive use of perception, learning, and decision-making in the field.

Cognition, Evolution and the Study of Behavior integrates research from psychology, behavioral ecology, and ethology in a wide-ranging synthesis of theory and research about animal cognition in the broadest sense, from species-specific adaptations in fish to cognitive mapping in rats and honeybees to theories of mind for chimpanzees. As a major contribution to the emerging discipline of comparative cognition, the book is an invaluable resource for all students and researchers in psychology, zoology, behavioral neuroscience. It will also interest general readers curious about the details of how and why animals--including humans--process, retain, and use information as they do.

Reviews

“This book is a very comprehensive review of animal cognition. It differs from other texts on this topic in a number of ways, as outlined by Shettleworth in her preface and in the opening chapter. Essentially, Shettleworth wants to advocate an 'adaptationist or ecological approach to cognition'. In doing so, she brings together a wealth of data on animal cognition, studied from quite different theoretical viewpoints, such as cognitive ethology, animal learning theory, neuroscience, behavioural ecology and cognitive psychology. . . . Each chapter ends with a clear and useful summary, and helpful suggestions for further reading. The book's numerous illustrations, which are mostly tables or figures redrawn by Margaret Nelson, greatly add to its appeal. . . . [T]his is a marvellously rich, well-written and stimulating book. . . . I greatly enjoyed reading [and] recommend it highly to anyone interested in animal cognition, evolution and behaviour.”--Animal Behaviour

“Sara Shettleworth has probably written the most comprehensive study of the animal mind ever and therefore a fundamental textbook on 'comparative cognition'. She first gets consciousness out of the way: whether an animal is conscious or not is impossible to determine, since consciousness is a private, subjective phenomenon. We can study cognition, and certainly cognition lends credibility to the idea that at least some animals must be at least to some degree conscious, but experiments can only prove facts about cognition. She reviews the field of cognitive ethology from the beginning and then analyzes the main cognitive tasks from an information-processing perspective By the end of her review of cognitive faculties, it become apparent that, at least among vertebrates, there are no significant differences in learning, except for language. All vertebrates are capable of 'associative' learning What no other vertebrate seems to be capable of is 'syntax'.” -- Piero Scaruffi, Thymos.com
Address
Corporate Author Thesis
Publisher Oxford University Press Place of Publication Oxford Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 9780195110487 Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4712
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title (up) Cognitive ecology: field or label? Type Journal Article
Year 2000 Publication Trends in Ecology & Evolution Abbreviated Journal Trends. Ecol. Evol
Volume 15 Issue 4 Pages 161
Keywords
Abstract
Address Depts of Psychology and Zoology, University of Toronto, Toronto, Ontario, Canada M5S 3G3
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5347 ISBN Medium
Area Expedition Conference
Notes PMID:10717686 Approved no
Call Number refbase @ user @ Serial 373
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title (up) Cognitive science: rank inferred by reason Type Journal Article
Year 2004 Publication Nature Abbreviated Journal Nature
Volume 430 Issue 7001 Pages 732-733
Keywords Animals; Cognition/*physiology; Group Structure; Male; *Social Dominance; Songbirds/*physiology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:15306792 Approved no
Call Number refbase @ user @ Serial 365
Permanent link to this record
 

 
Author Gibson, B.M.; Shettleworth, S.J.
Title (up) Competition among spatial cues in a naturalistic food-carrying task Type Journal Article
Year 2003 Publication Learning & behavior : a Psychonomic Society publication Abbreviated Journal Learn Behav
Volume 31 Issue 2 Pages 143-159
Keywords Adaptation, Psychological; Animals; Appetitive Behavior; *Association Learning; *Attention; Choice Behavior; *Cues; *Discrimination Learning; Male; Rats; Rats, Long-Evans; Space Perception; *Spatial Behavior
Abstract Rats collected nuts from a container in a large arena in four experiments testing how learning about a beacon or cue at a goal interacts with learning about other spatial cues (place learning). Place learning was quick, with little evidence of competition from the beacon (Experiments 1 and 2). Rats trained to approach a beacon regardless of its location were subsequently impaired when the well-learned beacon was removed and other spatial cues identified the location of the goal (Experiment 3). The competition between beacon and place cues reflected learned irrelevance for place cues (Experiment 4). The findings differ from those of some studies of associative interactions between cue and place learning in other paradigms.
Address University of Toronto, Toronto, Ontario, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1543-4494 ISBN Medium
Area Expedition Conference
Notes PMID:12882373 Approved no
Call Number refbase @ user @ Serial 368
Permanent link to this record