toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Emery, N.J.; Seed, A.M.; von Bayern, A.M.P.; Clayton, N.S. doi  openurl
  Title Cognitive adaptations of social bonding in birds Type Journal Article
  Year 2007 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 362 Issue 1480 Pages 489-505  
  Keywords  
  Abstract The “social intelligence hypothesis” was originally conceived to explain how primates may have evolved their superior intellect and large brains when compared with other animals. Although some birds such as corvids may be intellectually comparable to apes, the same relationship between sociality and brain size seen in primates has not been found for birds, possibly suggesting a role for other non-social factors. But bird sociality is different from primate sociality. Most monkeys and apes form stable groups, whereas most birds are monogamous, and only form large flocks outside of the breeding season. Some birds form lifelong pair bonds and these species tend to have the largest brains relative to body size. Some of these species are known for their intellectual abilities (e.g. corvids and parrots), while others are not (e.g. geese and albatrosses). Although socio-ecological factors may explain some of the differences in brain size and intelligence between corvids/parrots and geese/albatrosses, we predict that the type and quality of the bonded relationship is also critical. Indeed, we present empirical evidence that rook and jackdaw partnerships resemble primate and dolphin alliances. Although social interactions within a pair may seem simple on the surface, we argue that cognition may play an important role in the maintenance of long-term relationships, something we name as “relationship intelligence”.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 3528  
Permanent link to this record
 

 
Author (up) MacLean, E.; Matthews, L.; Hare, B.; Nunn, C.; Anderson, R.; Aureli, F.; Brannon, E.; Call, J.; Drea, C.; Emery, N.; Haun, D.; Herrmann, E.; Jacobs, L.; Platt, M.; Rosati, A.; Sandel, A.; Schroepfer, K.; Seed, A.; Tan, J.; van Schaik, C.; Wobber, V. doi  openurl
  Title How does cognition evolve? Phylogenetic comparative psychology Type Journal Article
  Year 2012 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 15 Issue 2 Pages 223-238  
  Keywords Biomedizin & Life Sciences  
  Abstract Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin / Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5604  
Permanent link to this record
 

 
Author (up) Seed, A.; Byrne, R. url  doi
openurl 
  Title Animal Tool-Use Type Journal Article
  Year 2010 Publication Current Biology Abbreviated Journal Curr Biol  
  Volume 20 Issue 23 Pages R1032-R1039  
  Keywords  
  Abstract The sight of an animal making and using a tool captivates scientists and laymen alike, perhaps because it forces us to question some of our ideas about human uniqueness. Does the animal know how the tool works? Did it anticipate the need for the tool and make it in advance? To some, this fascination with tools seems arbitrary and anthropocentric; after all, animals engage in many other complex activities, like nest building, and we know that complex behaviour need not be cognitively demanding. But tool-using behaviour can also provide a powerful window into the minds of living animals, and help us to learn what capacities we share with them -- and what might have changed to allow for the incontrovertibly unique levels of technology shown by modern humans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5318  
Permanent link to this record
 

 
Author (up) Seed, A.M.; Clayton, N.S.; Emery, N.J. doi  openurl
  Title Postconflict third-party affiliation in rooks, Corvus frugilegus Type Journal Article
  Year 2007 Publication Current biology : CB Abbreviated Journal Curr Biol  
  Volume 17 Issue 2 Pages 152-158  
  Keywords  
  Abstract Conflict features in the lives of many animal species and induces social stress mediated by glucocorticoid hormones [1]. Postconflict affiliation, between former opponents (reconciliation) or between former opponents and a bystander (third-party affiliation), has been suggested as a behavioral mechanism for reducing such stress [2], but has been studied almost exclusively in primates [3]. As with many primates, several bird species live in social groups and form affiliative relationships [4]. Do these distantly related animals also use affiliative behavior to offset the costs of conflict? We studied postconflict affiliation in a captive group of rooks. Unlike polygamous primates, monogamous rooks did not reconcile with former opponents. However, we found clear evidence of third-party affiliation after conflicts. Both initiators and targets of aggression engaged in third-party affiliation with a social partner and employed a specific behavior, bill twining, during the postconflict period. Both former aggressors and uninvolved third parties initiated affiliative contacts. Despite the long history of evolutionary divergence, the pattern of third-party affiliation in rooks is strikingly similar to that observed in tolerant primate species. Furthermore, the absence of reconciliation in rooks makes sense in light of the species differences in social systems.  
  Address Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17240341 Approved no  
  Call Number refbase @ user @ Serial 534  
Permanent link to this record
 

 
Author (up) Tebbich, S.; Seed, A.M.; Emery, N.J.; Clayton, N.S. doi  openurl
  Title Non-tool-using rooks, Corvus frugilegus, solve the trap-tube problem Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 2 Pages 225-231  
  Keywords Animals; Behavior, Animal/*physiology; Cognition/*physiology; Crows/*physiology; Female; Male; Problem Solving/*physiology  
  Abstract The trap-tube problem is used to assess whether an individual is able to foresee the outcome of its actions. To solve the task, an animal must use a tool to push a piece of food out of a tube, which has a trap along its length. An animal may learn to avoid the trap through a rule based on associative processes, e.g. using the distance of trap or food as a cue, or by understanding relations between cause and effect. This task has been used to test physical cognition in a number of tool-using species, but never a non-tool-user. We developed an experimental design that enabled us to test non-tool-using rooks, Corvus frugilegus. Our modification of the task removed the cognitive requirements of active tool use but still allowed us to test whether rooks can solve the trap-tube problem, and if so how. Additionally, we developed two new control tasks to determine whether rooks were able to transfer knowledge to similar, but novel problems, thus revealing more about the mechanisms involved in solving the task. We found that three out of seven rooks solved the modified trap-tube problem task, showing that the ability to solve the trap-tube problem is not restricted to tool-using animals. We found no evidence that the birds solved the task using an understanding of its causal properties, given that none of the birds passed the novel transfer tasks.  
  Address Department of Experimental Psychology, University of Cambridge, Cambridge, CB2 3EB, UK. st281@cam.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17171360 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2429  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print